Chapter 6

Results and Discussion

This chapter deals with results derived by statistical analysis after interpretation of raw field data and discussion of each result in a systematic manner. The results and their pertaining discussions are presented according to the specific objectives of the study.

Agro-economic and Socio-psychological profile of the selected respondents

A profile provides for cross-sectional information of a situation. Agro-economic status refers to the position of an individual with reference to various indicators of agronomic condition in a farming community. The Socio-psychological status refers to the position of an individual with reference to various indicators of socio-economic condition in a farming community. Agro-economic and Socio-psychological status of selected respondent was calculated by adding the scores assigned to a category of each item.

Table: 6.1: Agro-economic and Socio-psychological profileof selected respondents.

(Conventional method of rice)

Items	Category	Frequency	Percentage (%)
	40-49	39	39
	50-59	29	29
Age (X ₁)	60-69	23	23
	70-79	9	9
	Illiterate		
	Primary	1	1
	Secondary	18	18
Education (X ₂)	Higher	-	38
	secondary	38	27
	Graduate and	27	16
	above	16	
	1.4-2.24	14	14
Family education	2.24-3.08	29	29
status (X ₃)	3.08-3.92	30	30
	3.92-4.76	27	27
	Labour		
	Caste	13	13
	occupation	11	11
Primary occupation	Business	20	20
(X ₄₁)	Independent	9	9
	profession	41	41
	Cultivation	6	6
	Service		
	No		
	Labour	6	6
	Caste	9	9
Secondary occupation	occupation	9	9
(X ₄₂)	Business	10	10
	Independent	7	7
	profession	59	59
	Cultivation		

Caste (X5)	Scheduled tribe Scheduled caste OBC General	17 24 33 26	17 24 33 26
Family type (X ₆)	Single family Joint family	58 42	58 42
Family size (X7)	Up to 5 members Above 5 members	38 62	38 62
Family income primary (X ₈₁)	Less than 2500 2500-5000 5000-7500 7500-10000 More than 10,000	60 32 5 2 1	60 32 5 2 1
Family income secondary (X ₈₂)	0-1500 1500-3000 3000-4500 4500 and above	74 19 6 1	74 19 6 1
Farm size (X ₉)	Less than 2.4 2.4-4.4 4.4-6.4 6.4-8.4 Above 8.4	51 25 11 8 5	51 25 11 8 5

Social participation (X ₁₀)	None Member of one organization Member of more than one Office holder Wider public leader	33 36 18 7 6	33 36 18 7 6
Risk orientation (X_{11})	0-1.5	8	8
	1.5-3	11	11
	3-4.5	33	33
	4.5-6	37	37
	6-7.5	11	11
Index of farm mechanization (X ₁₂)	60-79 80-99	33 36 17 14	33 36 17 14
Cropping intensity (X ₁₃)	100-150 150-200	3 48 39 10	3 48 39 10
Selling % (X ₁₄)	40-55	5	5
	55-70	12	12
	70-85	52	52
	85-100	31	31
Debt (X ₁₅)	No	30	30
	Yes	70	70
Migration (X ₁₆)	No	88	88
	Yes	12	12
Seed rate % (X ₂₁)	90-110	31	31
	110-130	41	41
	130-150	23	23
	150-170	5	5
Fertilizer % (X ₂₂)	53.3-73.3	12	12
	73.3-93.3	33	33
	93.3-113.3	31	31
	113.3-133.3	24	24

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 240

	33.3-133.3	50	50
Pesticide% (X ₂₃)	133.3-233.3	34	34
	233.3-333.3	10	10
	333.3-433.3	6	6
	53.3-93.3	30	30
Weed management%	93.3-133.3	49	49
(X ₂₄)	133.3-173.3	20	20
	173.3-213.3	1	1
	Less than 25	27	27
Water management%	25-74	25	25
(X ₂₅)	75-124	40	40
	Above 125	8	8
	Less than 25	30	30
	25-50	26	26
Irrigation index% (X ₂₆)	50-75	30	30
	75-100	14	14
Sowing time (X ₂₇)	15june-25 June 26 june-5 July 6 july-15july 16 july-25 July	40 24 11 25	40 24 11 25
Varietal change (X ₂₈)	Due to climate change(1) Due to other reason(0)	58 42	58 42
Farm power (X ₂₉)	No drought animal(0) 1 to 2 drought animal(2) 3 to 4 drought animal(4) 5 to 6 drought animal(6)	38	13 38 24 25

		r	
5	(Out of 10 scale) Less than 2 2-3 4-5 6-8 Above 8	2 14 12 34 38	2 14 12 34 38
Change pattern in temperature (day/night) over last 20 year (X ₃₁)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	4 11 13 40 32	4 11 13 40 32
Change pattern in weather disaster over last 20 year (X ₃₂)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	3 13 17 38 29	3 13 17 38 29
Change in seasonal pattern over last 20 year (X ₃₃)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	3 13 17 41 26	3 13 17 41 26
Change pattern in insect/ pests & diseases over last 20 year (X ₃₄)	(0- 10 scale) 2-3 4-5 6-8 Above 8	4 10 45 41	4 10 45 41
Change pattern in weed problem over last 20 year (X ₃₅)	2-3	2 8 38 44 8	2 8 38 44 8

Discussion

Table 6.1, it represents the frequency distribution of the respondents according to their Age, Education, Family education status, Primary occupation, Secondary occupation, Caste, Family type, Family size, Family income primary, Family income secondary, Farm size, Social participation, Risk orientation, Index of farm mechanization, Cropping intensity, Selling%, Debt, Fertilizer%, Migration, Seed rate%, Pesticide% Weed management%, Water management%, Irrigation index%, Sowing time, Varietal change, Farm power, Change in rainfall pattern over last 20 year, Change pattern in temperature(day/night) over last 20 year, Change pattern in weather disaster over last 20 year, Change in seasonal pattern over last 20 year, Change pattern in insect/ pests & diseases over last 20 year, Change pattern in weed problem over last 20 year.

Age

The attribute caste has categorized four distinct categorized viz. 40-49, 50-59, 60-69, 70-79. The major percentage of the respondent is 40-49 (39%) and 50-59 category (29%). 60-69 category (23%) and very less in 70-79 (9%) category.

Education

The attribute education has been five distinct categories viz. illiterate, primary, secondary, higher secondary, graduate and above etc. The major percentage of the respondent is secondary (38%) under the category education, followed by primary (18%),

higher secondary (27%), graduate and above (16%), illiterate (1%).

Family education status

The attribute family education status has 4 distinct categories according to their education score viz. illiterate, primary, secondary, higher secondary, graduate and above etc. The major percentage of the family education status (30%) under the category 3.08-3.92. (secondary and higher secondary group).

Primary occupation

The attribute primary occupation has 6 distinct categories. The major percentage of the respondents (41%) under the category cultivation followed by the (20%) in business category and very less (6%) in service category.

Secondary occupation

The attribute secondary occupation has 6 distinct categories. The major percentage of the respondents (59%) under the category cultivation followed by the (10%) in business category and very less (6%) in no any secondary occupation category.

Caste

The attribute caste has 4 distinct categories. The major percentage of the respondents (33%) under the Obc (Other backward class) category followed by the (26%) in general category and very less (17%) in scheduled tribe category.

Family type

The attribute family type has 2 distinct categories. The major percentage of the respondents (58%) under the single family category followed by the (42%) in joint family category.

Family size

The attribute family size has 2 distinct categories. The major percentage of the respondents (62%) under the above 5 member category followed by the (38%) in up to 5 members in the family category.

Family income primary

The attribute family income primary has 5 distinct categories. The major percentage of the respondents (60%) under less than 2500 category followed by the (32%) under 2500-5000 category.

Family income secondary

The attribute family income secondary has 4 distinct categories. The major percentage of the respondents (74%) under 0-1500 category followed by the (19%) under 1500-3000 category.

Farm size

The attribute farm size has 5 distinct categories. The major percentage of the respondents (51%) under less than 2.4 hectare farm size category followed by the (25%) under 2.4-4.4 hectare farm size category.

Social participation

The attribute Social participation has 5 distinct categories. The major percentage of the respondents (36%) under the member of one organization category followed by the (33%) under no any social participation category.

Risk orientation

The attribute risk orientation has 5 distinct categories. The major percentage of the respondents (37%) under the 4.5-6 category means in between agree and strongly agree category towards the risk orientation followed by the (33%) under 3-4.5 means disagree and undecided category.

Index of farm mechanization

The attribute index of farm mechanization has 4 distinct categories on the basis of their total score. The major percentage of the respondents (36%) under the 40-59 score category followed by the (33%) under 20-39 score category.

Cropping intensity

The attribute cropping intensity has 3 distinct categories. The major percentage of the respondents (48%) under the 50-100% category followed by the (39%) under 100-150% cropping intensity category. in very less (3%) under less than 50 categories.

Selling %

The attribute selling % has 4 distinct categories on the basis of their total selling of produce. The major percentage of the respondents (52%) under the 70-85 category followed by the (31%) under 85-100 category.

Debt

The attribute debt has 2 distinct categories. The major percentage of the respondents (70%) under the yes category followed by the (30%) under no category.

Migration

The attribute migration has 2 distinct categories. The major percentage of the respondents (88%) under the no category followed by the (12%) under yes category those wanted to migrate from one place to another place.

Seed Rate%

The attribute seed rate% has 4 distinct categories. The major percentage of the respondents (41%) under the 110-130 category followed by the (31%) under 90-110 category.

Fertilizer%

The attribute fertilizer% has 4 distinct categories. The major percentage of the respondents (33%) under the 73.3-93.3 category followed by the (31%) under 93.3-113.3 category.

Pesticide%

The attribute pesticide% has 4 distinct categories. The major percentage of the respondents (50%) under the 33.3-133.3 category followed by the (34%) under 133.3-233.3 category. In very less (6%) under 333.3-433.3 category.

Weed management%

The attribute weed management% has 4 distinct categories. The major percentage of the respondents (49%) under the 93.3-133.3 category followed by the (30%) under 53.3-93.3 category. In very less (1%) under 173.3-213.3 category.

Water management%

The attribute water management% has 4 distinct categories. The major percentage of the respondents (40%) under the 75-124 category followed by the (27%) under less than 25 category. In very less (8%) under above 125 category.

Irrigation index%

The attribute irrigation index% has 4 distinct categories. The major percentage of the respondents (30%) under the 50-75 and less than 25 categories. In very less (14%) under above 75-100 category.

Sowing time

The attribute sowing time has 4 distinct categories. The major percentage of the respondents (40%) under the 15 June- 25 June

category. followed by the (25%) under 16 July-25 July category. In very less (11%) under 6 July- 15 July category.

Varietal change

The attribute varietal change has 2 distinct categories. The major percentage of the respondents (58%) under the 1 category. followed by the (42%) under 0 categories.

Farm power

The attribute farm power has 4 distinct categories. The major percentage of the respondents (38%) under 1 to 2 drought animal category. followed by the (25%) under 5-6 drought animal category.

Change in rainfall pattern over last 20 year

The attribute change in rainfall pattern over last 20 year has 5 distinct categories. The major percentage of the respondents (38%) under above 8 category. followed by the (34%) under 6-8 category. In very less (2%) under less than 2 category.

Change pattern in temperature (day/night) over last 20 year

The attribute change pattern in temperature (day/night) over last 20 year has 5 distinct categories. The major percentage of the respondents (40%) under above 6-8 category. followed by the (32%) under above 8 categories. In very less (4%) under less than 2 category.

Change pattern in weather disaster over last 20 year

The attribute change pattern in weather disaster over last 20 year has 5 distinct categories. The major percentage of the respondents (38%) under above 4-5 category. followed by the (29%) under 6-8 categories. In very less (3%) under less than 2 category.

Change in seasonal pattern over last 20 year

The attribute change in seasonal pattern over last 20 year has 5 distinct categories. The major percentage of the respondents (41%) under above 4-5 category. followed by the (26%) under 6-8 categories. In very less (3%) under less than 2 category.

Change pattern in insect/ pests & diseases over last 20 year

The attribute change pattern in insect/ pests & diseases over last 20 year has 4 distinct categories. The major percentage of the respondents (45%) under above 6-8 category. followed by the (41%) under above 8 categories. In very less (4%) under less than 2-3 category.

Change pattern in weed problem over last 20 year

The attribute change pattern in weed problem over last 20 year has 5 distinct categories. The major percentage of the respondents (44%) under above 6-8 category. followed by the (38%) under 4-5 categories. In very less (2%) under less than 2 category. Extension communication profile of selected respondents.

(Conventional method of rice)

Table 6.2: Mass media exposure of selected respondents

Exposure to	Alw s	/ay		Very Some often times			Ver few	у	Ne	ver
	F	%	F	%	F	%	F	%	F	%
Radio	25	25	27	27	33	33	11	11	4	4
Television	38	38	18	18	26	26	10	10	8	8
Educational film	9	9	10	10	15	15	18	18	48	48
News paper	18	18	4	4	10	10	30	30	38	38
Agril. magazine	0	0	0	0	2	2	16	16	82	82
Agricultural exhibition	7	7	14	14	21	21	27	27	31	31

Discussion

Table 6.2, showed that, in case of selected respondents the majority of the respondent had some time (33%) listen radio, followed by very often (27%), always (25%), very few (11%) and never (4%) listen radio respectively.

In case of selected respondents the majority of the respondent had always (38%) watching television, followed by sometimes (26%), very often (18%), very few (10%) and never (8%) watching television.

In case of selected respondents the majority of the respondent had never (48%) watching education film, followed by very few watching (18%), sometimes watching (15%) and very often watching (10%), and always watching (9%) educational film.

In case selected respondents the majority of the respondent had never reading (38%) news paper, followed by very few reading (30%), always reading (18%), sometimes reading (10%) and very often reading (4%).

In case of selected respondents the majority of the respondent had never reading (82%) agril. magazine, followed by very few reading (16%), sometime reading (2%) and no any respondents in always and very often category.

In case selected respondents the majority of the respondent had never (31%) going to agricultural exhibition, followed by very few going exhibition (27%), sometime (21%), very often going (14%) and always going (7%) agricultural exhibition.

Table 6.3: Utilization of personal cosmopolite sources ofinformation

Statement	Alway	Sometim	Neve
	S	es	r
i) I use to travel outside my village	70	21	9
during last year to visit place.			
ii) I personally visited agriculture	17	43	40
expert for his advice about my			
occupation.			
iii) I use to contact with agriculture	13	31	56
expert who visited my village for his			
advice/help during last year.			
iv) I use to visit farmers of outside	23	42	35
my village and seek their advice.			
v) I use to invite people who visited	13	18	69
my village for discussion about			
village development during last			
year.			

Discussion:

Table 6.3, showed that, in case of selected respondents the majority of the respondents always (70%) use to travel outside their village during last year to visit place, followed by (21%) sometimes use to travel outside their village during last year to visit place and never (9%) use to travel outside their village during last year to visit place.

In case of selected respondents the majority of the respondents sometimes (43%) personally visited agriculture expert for their advice about their occupation, followed by (40%) never personally visited agriculture expert for their advice about their occupation and always (17%) personally visited agriculture expert for their advice about their occupation.

In case of selected respondents the majority of the respondents never (56%) use to contact with agriculture expert who visited their village for their advice/help during last year, followed by sometimes (31%) use to contact with agriculture expert who visited their village for their advice/help during last year and always (13%) use to contact with agriculture expert who visited their village for their advice/help during last year.

In case of selected respondents the majority of the respondents sometimes (42%) use to visit farmers of outside their village and seek their advice, followed by never (35%) use to visit farmers of outside their village and seek their advice and always (23%) use to visit farmers of outside their village and seek their village and seek their advice.

In case of selected respondents the majority of the respondents never (69%) use to invite people who visited their village for discussion about village development during last year, followed by sometimes (18%) use to invite people who visited their village for discussion about village development during last year and always (13%) use to invite people who visited their village for discussion about village development during last year.

Table 6.4: Utilization of personal localite sources ofinformation

Source	Very	ofte	Sometim	Neve
	often	n	es	r
i) Local agents	31	42	17	10
ii) Local leader	9	32	23	36
iii) Friends/relative/neighbors	43	12	31	14
iv) Experienced/ progressive	18	31	40	11
farmers				

Discussion:

Table 6.4, showed that, in case of selected respondents the majority of the respondents often (42%) had utilized the personal localite sources of information from local agents, followed by very often (31%) respondents had utilized the personal localite sources of information from local agents, sometimes (17%) had utilized the personal localite sources of information from local agents and never (10%) respondents had utilized the personal localite sources of information from local agents.

In case of selected respondents the majority of the respondents never (36%) had utilized the personal localite sources of information from local leaders; followed by often

(32%) respondents had utilized the personal localite sources of information from local leaders, sometimes (23%) respondents had utilized the personal localite sources of information from local leaders and very often (9%) respondents had utilized the personal localite sources of information from local leaders.

In case of selected respondents the majority of the respondents very often (43%) had utilized the personal localite sources of information from friends/ relative/neighbors, followed by sometimes (31%) respondents had utilized the personal localite sources of information from friends/ relative/neighbors, never (14%) respondents had utilized the personal localite sources of information from friends/ relative/neighbors and often (12%) had utilized the personal localite sources of information from friends/ relative/neighbors and often (12%) had utilized the personal localite sources of information from friends/ relative/neighbors and often (12%) had utilized the personal localite sources of information from friends/ relative/neighbors.

In case of selected respondents the majority of the respondents sometimes (40%) had utilized the personal localite sources of information from experienced/ progressive farmers, followed by often (31%) respondents had utilized the personal localite sources of information from experienced/ progressive farmers, very often (18%) had utilized the personal localite sources of information from experienced/ progressive farmers and never (11%) respondents had utilized the personal localite sources of information from experienced/ progressive farmers and never (11%) respondents had utilized the personal localite sources of information from experienced/ progressive farmers.

S	Extension worker	Most	Oft	Someti	Rare	Nev
Ν		often	en	mes	ly	er
1	A.D.O.	17	32	19	9	23
2	B.D.O.	9	16	25	12	38
3	Agril supervisor	21	5	17	41	16
4	Agril officer (T & V)	32	11	14	9	34
5	Agril scientist	15	9	31	12	33
6	Fertilizer dealer	41	30	19	7	3
7	Private company(seed/pesticide	5	7	14	9	65
)					

Table 6.5: Contact with extension personal

Discussion:

Table 6.5, showed that, in case of selected respondents the majority of the respondents often (32%) had contact with Agriculture development officer (A.d.o.), followed by never (23%) had contact with Agriculture development officer (A.d.o.), sometimes (19%) had contact with Agriculture development officer (A.d.o.), most often (17%) had contact with Agriculture development officer (A.d.o.) and rarely (9%) had contact with Agriculture development officer (A.d.o.).

In case of selected respondents the majority of the respondents never (38%) had contact with Block development officer (B.d.o.), followed by sometimes (25%) had contact with Block development officer (B.d.o.), often (16%) had contact with Block development officer (B.d.o.), rarely (12%) had contact with Block development officer (B.d.o.) and most often (9%) had contact with Block development officer (B.d.o.).

In case of selected respondents the majority of the respondents rarely (41%) had contact with agril supervisor, followed by most often (21%) had contact with agril supervisor, sometimes (17%) had contact with agril supervisor, never (16%) had contact with agril supervisor and often (5%) had contact with agril supervisor.

In case of selected respondents the majority of the respondents never (34%) had contact with agril officer (t & v), followed by most often (32%) had contact with agril officer (t & v), sometimes (14%) had contact with agril officer (t & v), often (11%) had contact with agril officer (t & v), and rarely (9%) had contact with agril officer (t & v).

In case of selected respondents the majority of the respondents never (33%) had contact with agril scientist, followed by sometimes (31%) had contact with agril scientist, most often (15%) had contact with agril scientist, rarely (12%) had contact with agril scientist.

In case of selected respondents the majority of the respondents most often (41%) had contact with fertilizer dealer, followed by often (30%) had contact with fertilizer dealer, sometimes (19%) had contact with fertilizer dealer, rarely (7%) had contact with fertilizer dealer, and never (3%) had contact with fertilizer dealer.

In case of selected respondents the majority of the respondents never (65%) had contact with private company

(seed/pesticide),followed by sometimes (14%) had contact with private company (seed/pesticide), rarely (9%) had contact with private company (seed/pesticide),often(7%) had contact with private company (seed/pesticide), and most often (5%) had contact with private company (seed/pesticide).

Table 6.6: Agro-economic and Socio-psychological profile
of selected respondents. (SRI method of rice)

Items	Category	Frequency	Percentag e (%)
Age (X_1) Education (X_2)	40-49 33 50-59 31 60-69 22 70-79 14 Illiterate Primary Psecondary 17 Higher 42 22 23		33 31 22 14 2 17 42
Family education status (X ₃)	secondary Graduate and above 1-2 2-3 3-4	23 16 26 35 25	23 16 26 35 25
Primary occupation (X ₄₁)	4-5 None Labour Caste	14 11 1 23 13 42 10	14 11 1 23 13 42 10

	1		
	None		
	Labour	20	20
	Caste	4	4
Secondary occupation	occupation	6	6
(X ₄₂)	Business	7	7
	Independent	5	5
	profession	58	58
	Cultivation		
	Schedule		
	tribe	20	20
	Scheduled	26	26
Caste (X ₅)	caste	27	27
	OBC	27	27
	General		
	Single family	54	54
Family type (X ₆)	Joint family	46	46
	Up to 5		
	members	44	44
Family size (X7)		56	56
	members	00	00
	Less than		
	2500		
	2500-5000	36	36
Family income primary	5000-7500	24	24
(X ₈₁)	7500-10000	18	18
(//81)	More than	13	13
	10,000	9	9
	10,000		
	0-1500	86	86
Family income		9	9
secondary (X ₈₂)	3000-4500	4	4
	Above 6000	1	1
	Less than 2.4	59	59
	2.4-4.4	27	27
Farm size (X ₉)	4.4-6.4	10	10
	6.4-8.4	4	4
	0.4-0.4	ד	т

		r	
	None		
	Member of		
	one	0	0
	organization	34	34
Social participation (X_{10})	Member of	24	24
	more than	30	30
	one	52	52
	Office holder	52	52
	Wider public		
	leader		
	0-1.5	22	22
	1.5-3	14	14
Risk orientation (X ₁₁)	3-4.5	23	23
	4.5-6	22	22
	6-7.5	19	19
	20-39	22	22
Index of farm		38	38
mechanization (X ₁₂)	60-79	21	21
	80-99	19	19
	50-100	51	51
Cropping intensity (X ₁₃)	100-150	43	43
	150-200	6	6
	40-55	8	8
Selling% (X ₁₄)	55-70	24	24
	70-85	39	39
	85-100	29	29
Debt (X ₁₅)	No	21	21
	Yes	79	79
Migration (X ₁₆)	No	92	92
	Yes	8	8
	100-199	48	48
Seed rate% (X ₂₁)	200-299	30	30
	300-399	15	15
	400-499	7	7
	53.3-73.3	8	8
Fertilizer% (X ₂₂)	73.3-93.3	36	36
	93.3-113.3	43	43
	113.3-133.3	13	13

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 260

	•		
	70-119	56	56
Pesticide% (X ₂₃)	120-169	33	33
	170-219	9	9
	220-269	2	2
	Less than 80	8	8
Weed management%	80-120	63	63
(X ₂₄)	120-160	22	22
	Above 160	7	7
	Less than 80	14	14
Water management%	80-100	34	34
(X ₂₅)	100-120	51	51
	Above 120	1	1
	Less than 70	10	10
Irrigation index% (X_{26})	70-90	53	53
	Above 90	37	37
	15 July-23		
	July	20	20
$C_{\rm eventian event integral (M_{\rm even})$	24 July-31	38 32	38
Sowing time (X ₂₇)	July		32
	1 August-8	30	30
	August		
	Due to		
	climate	64	64
Varietal change (X ₂₈)	change(1)		64 36
_	Due to other	36	30
	reason(0)		
	No drought		
	animal(0)		
	1 to 2		
	drought	22	22
	animal(2)	22	22
Farm power (X ₂₉)	3 to 4	38	38
	drought	23	23
	animal(4)	17	17
	5 to 6		
	drought		
	animal(6)		
	animal(6)		

Change in rainfall pattern over last 20 year (X ₃₀)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	1 7 14 50 28	1 7 14 50 28
Change pattern in temperature (day/night) over last 20 year (X ₃₁)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	3 9 23 51 14	3 9 23 51 14
Change pattern in weather disaster over last 20 Year (X ₃₂)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	3 16 20 46 15	3 16 20 46 15
Change in seasonal pattern over last 20 year (X ₃₃)	(0- 10 scale) Less than 2 2-3 4-5 6-8 Above 8	4 13 18 51 14	4 13 18 51 14
Change pattern in insect/ pests & diseases over last 20 year (X ₃₄)		3 14 30 53	3 14 30 53
Change pattern in weed problem over last 20 year (X ₃₅)	(0- 10 scale) 4-5 6-7 Above 8	5 21 74	5 21 74

Discussion:

Table 6.6, Represents the frequency distribution of therespondents according to their age, education, family education

status, primary occupation, secondary occupation, caste, family type, family size, family income primary , family income secondary, farm size, social participation, risk orientation, index of farm mechanization, cropping intensity, selling%, debt, fertilizer%, seed rate%, pesticide%, migration. weed management%, water management%, irrigation index%, sowing time, varietal change, farm power, change in rainfall pattern over last 20 year, change pattern in temperature(day/night) over last 20 year, change pattern in weather disaster over last 20 year, change in seasonal pattern over last 20 year, change pattern in insect/ pests & diseases over last 20 year, change pattern in weed problem over last 20 year.

Age

The attribute caste has categorized four distinct categorized viz. 40-49, 50-59, 60-69, 70-79. The major percentage of the respondent is 40-49 (33%) and 50-59 category (31%). 60-69 category (22%) and very less in 70-79 (14%) category.

Education

The attribute education has been five distinct categories viz. Illiterate, Primary, Secondary, Higher secondary, Graduate and above etc. The major percentage of the respondent is secondary (42%) under the category secondary education, followed by higher secondary (23%). In very less (2%) under illiterate category.

Family education status

The attribute family education status has 4 distinct categories according to their education score viz. illiterate, primary, secondary, higher secondary, graduate and above etc. The major percentage of the family education status (35%) under the category 2-3. (Secondary and higher secondary group).

Primary occupation

The attribute primary occupation has 6 distinct categories. The major percentage of the respondents (42%) under the category cultivation followed by the (23%) in business category and very less (1%) in labour category.

Secondary occupation

The attribute secondary occupation has 6 distinct categories. The major percentage of the respondents (58%) under the category cultivation followed by the (20%) in none category and very less (4%) in labour category.

Caste

The attribute caste has 4 distinct categories. The major percentage of the respondents (27%) under the OBC (Other backward class) & general category and very less (20%) in scheduled tribe category.

Family type

The attribute family type has 2 distinct categories. The major percentage of the respondents (54%) under the single family category followed by the (46%) in joint family category.

Family size

The attribute family size has 2 distinct categories. The major percentage of the respondents (56%) under the above 5 member category followed by the (44%) in up to 5 members in the family category.

Family income primary

The attribute family income primary has 5 distinct categories. The major percentage of the respondents (36%) under less than 2500 category followed by the (24%) under 2500-5000 category.

Family income secondary

The attribute family income secondary has 4 distinct categories. The major percentage of the respondents (86%) under 0-1500 category followed by the (9%) under 1500-3000 category.

Farm size

The attribute farm size has 5 distinct categories. The major percentage of the respondents (59%) under less than 2.4 hectare farm size category followed by the (27%) under 2.4-4.4 hectare farm size category.

Social participation

The attribute social participation has 5 distinct categories. The major percentage of the respondents (52%) under wider public leader category followed by the (34%) under member of one organization category.

Risk orientation

The attribute risk orientation has 5 distinct categories. The major percentage of the respondents (23%) under the 3-4.5 category means in between dis-agree and undecided category towards the risk orientation followed by the (22%) under 0-1.5 means strongly dis- agree category.

Index of farm mechanization

The attribute index of farm mechanization has 4 distinct categories on the basis of their total score. The major percentage of the respondents (38%) under the 40-59 score category followed by the (22%) under 20-39 score category.

Cropping intensity

The attribute cropping intensity has 3 distinct categories. The major percentage of the respondents (51%) under the 50-100% category followed by the (43%) under 100-150% cropping intensity category. In very less (6%) under 150-200 category.

Selling%

The attribute selling% has 4 distinct categories on the basis of their total selling of produce. The major percentage of the respondents (39%) under the 70-85 category followed by the (29%) under 85-100 category.

Debt

The attribute debt has 2 distinct categories. The major percentage of the respondents (79%) under the yes category followed by the (21%) under no category.

Migration

The attribute migration has 2 distinct categories. The major percentage of the respondents (92%) under the no category followed by the (8%) under yes category those wanted to migrate from one place to another place.

Seed rate%

The attribute seed rate% has 4 distinct categories. The major percentage of the respondents (48%) under the 100-199 category followed by the (30%) under 200-299 category.

Fertilizer%

The attribute fertilizer% has 4 distinct categories. The major percentage of the respondents (43%) under the 93.3-113.3 category followed by the (36%) under 73.3-93.3 category.

Pesticide%

The attribute pesticide% has 4 distinct categories. The major percentage of the respondents (56%) under the 70-119 category followed by the (33%) under 120-169 category. In very less (2%) under 220-269 category.

Weed management%

The attribute weed management% has 4 distinct categories. The major percentage of the respondents (63%) under the 80-120 category followed by the (22%) under 120-160 category. In very less (7%) under above 160 category.

Water management%

The attribute water management% has 4 distinct categories. The major percentage of the respondents (51%) under the 100-120 category followed by the (34%) under 80-100 category. In very less (1%) under above 120 category.

Irrigation index%

The attribute irrigation index% has 3 distinct categories. The major percentage of the respondents (53%) under the 70-90 categories. In very less (10%) under less than 70 category.

Sowing time

The attribute sowing time has 3 distinct categories. The major percentage of the respondents (38%) under the 15 July – 23 July category. followed by the (32%) under 24 July-31 July category. In very less (30%) under 1 august – 8 august category.

Varietal change

The attribute varietal change has 2 distinct categories. The major percentage of the respondents (64%) under the 1 category. followed by the (36%) under 0 categories.

Farm power

The attribute farm power has 4 distinct categories. The major percentage of the respondents (38%) under 1 to 2 drought animal category. followed by the (23%) under 3-4 drought animal category.

Change in rainfall pattern over last 20 year

The attribute change in rainfall pattern over last 20 year has 5 distinct categories. The major percentage of the respondents (50%) under 4-5 category. followed by the (28%) under 6-8 category. In very less (1%) under less than 2 category.

Change pattern in temperature (day/night) over last 20 year

The attribute change pattern in temperature (day/night) over last 20 year has 5 distinct categories. The major percentage of the respondents (51%) under above 4-5 category. followed by the (23%) under 2-3 categories. In very less (3%) under less than 2 category.

Change pattern in weather disaster over last 20 year

The attribute change pattern in weather disaster over last 20 year has 5 distinct categories. The major percentage of the respondents (46%) under above 6-8 category, followed by the (20%) under 4-5 categories. In very less (3%) under less than 2 category.

Change in seasonal pattern over last 20 year

The attribute change in seasonal pattern over last 20 year has 5 distinct categories. The major percentage of the respondents (51%) under above 6-8 category, followed by the (18%) under 4-5 categories. In very less (4%) under less than 2 category.

Change pattern in insect/ pests & diseases over last 20 year

The attribute change pattern in insect/ pests & diseases over last 20 year has 4 distinct categories. The major percentage of the respondents (53%) under above 8 category, followed by the (30%) under 6-8 categories. In very less (3%) under 2-3 category.

Change pattern in weed problem over last 20 year

The attribute change pattern in weed problem over last 20 year has 3 distinct categories. The major percentage of the respondents (74%) under above 8 category, followed by the (21%) under 6-7 categories. In very less (5%) under 4-5 category.

Extension communication profile of selected respondents. (SRI method of rice)

Table 6.7: Mass media exposure of selected respondents

Exposure to	Alway s		5		Some times		Very few		Never	
	F	%	F	%	F	%	F	%	F	%
Radio	35	35	9	9	15	15	11	11	30	30
Television	29	29	27	27	23	23	10	10	11	11

Educational film	12	12	9	9	17	17	21	21	41	41
News paper	36	36	14	14	12	12	23	23	15	15
Agril. magazine	7	7	4	4	13	13	18	18	58	58
Agricultural Exhibition	11	11	10	10	27	27	35	35	17	17

Discussion

Table 6.7, showed that, in case of selected respondents the majority of the respondent had always (35%) listen radio, followed by never (30%), sometimes (15%), very few (11%) and very often (9%) listen radio respectively.

In case of selected respondents the majority of the respondent had always (29%) watching television, followed by very often (27%), sometimes (23%), never (11%) and very few (10%) watching television.

In case of selected respondents the majority of the respondent had never (41%) watching education film, followed by very few watching (21%), sometimes watching (17%) and always watching (12%), and very often (9%) watching educational film.

In case selected respondents the majority of the respondent had always reading (36%) news paper, followed by very few reading (23%), never reading (15%), very often reading (14%) and sometimes reading (12%).

In case of selected respondents the majority of the respondent had never reading (58%) agril. magazine, followed by

very few reading (18%), sometime reading (13%) always reading (7%) and very often (4%) reading argil magazine.

In case selected respondents the majority of the respondent had very few (35%) going to agricultural exhibition, followed by sometimes going exhibition (27%), never (17%), always going (11%) and very often going (10%) agricultural exhibition.

Table 6.8: Utilization of personal cosmopolite sources ofinformation

Statement	Alway	Sometim	Neve
	S	es	r
i) I use to travel outside my village	41	35	24
during last year to visit place.			
ii) I personally visited agriculture	21	38	41
expert for his advice about my			
occupation.			
iii) I use to contact with agriculture	41	26	33
expert who visited my village for his			
advice/help during last year.			
iv) I use to visit farmers of outside	41	28	31
my village and seek their advice.			
v) I use to invite people who visited	24	42	34
my village for discussion about			
village development during last			
year.			

Discussion:

Table 6.8, showed that, in case of selected respondents the majority of the respondents always (41%) use to travel outside their village during last year to visit place, followed by (35%) sometimes use to travel outside their village during last year to visit place and never (24%) use to travel outside their village during last year to utside their village during last year to visit place.

In case of selected respondents the majority of the respondents never (41%) personally visited agriculture expert for their advice about their occupation, followed by sometimes (38%) personally visited agriculture expert for their advice about their occupation and always (21%) personally visited agriculture expert for their advice about their expert for their advice about their occupation.

In case of selected respondents the majority of the respondents always (41%) use to contact with agriculture expert who visited their village for their advice/help during last year, followed by never (33%) use to contact with agriculture expert who visited their village for their advice/help during last year and sometimes (26%) use to contact with agriculture expert who visited their village for their advice/help during last year.

In case of selected respondents the majority of the respondents always (41%) use to visit farmers of outside their village and seek their advice, followed by never (31%) use to visit farmers of outside their village and seek their advice and sometimes (28%) use to visit farmers of outside their village and seek their village and seek their advice.

In case of selected respondents the majority of the respondents sometimes (42%) use to invite people who visited their village for discussion about village development during last year, followed by never (34%) use to invite people who visited their village for discussion about village development during last year and always (24%) use to invite people who visited their village for discussion about village development during last year and always (24%) use to invite people who visited their village for discussion about village development during last year.

Source	Very	ofte	Sometim	Neve
	often	n	es	r
i) Local agents	40	21	9	30
ii) Local leader	12	41	11	36
iii)	51	19	30	0
Friends/relative/neighbours				
iv) Experienced/ progressive	21	39	23	17
farmers				

Table 6.9: Utilization of personal localite sources of information

Discussion:

Table 6.9, it showed that, in case of selected respondents the majority of the respondents very often (40%) had utilized the personal localite sources of information from local agents, followed by never (30%) respondents had utilized the personal localite sources of information from local agents, often (21%) had utilized the personal localite sources of information from local agents from local agents and sometimes (9%) respondents had utilized the personal localite sources of information from local agents.

In case of selected respondents the majority of the respondents often (41%) had utilized the personal localite sources of information from local leaders; followed by never (36%) respondents had utilized the personal localite sources of information from local leaders, very often (12%) respondents had utilized the personal localite sources of information from local leaders and sometimes (11%) respondents had utilized the personal localite sources of information from local leaders.

In case of selected respondents the majority of the respondents very often (51%) had utilized the personal localite sources of information from friends/ relative/neighbors, followed by sometimes (30%) respondents had utilized the personal localite sources of information from friends/relative/neighbors, often (19%) respondents had utilized the personal localite sources of information from friends/ relative/neighbors and there had no any respondents in never category.

In case of selected respondents the majority of the respondents often (39%) had utilized the personal localite sources of information from experienced/ progressive farmers, followed by sometimes (23%) respondents had utilized the personal localite sources of information from experienced/ progressive farmers, very often (21%) had utilized the personal localite sources of information from experienced/ progressive farmers and never (17%) respondents had utilized the personal localite sources of information from experienced/ progressive farmers and never (17%) respondents had utilized the personal localite sources of information from experienced/ progressive farmers.

S	Extension worker	Most	Oft	Someti	Rare	Nev
Ν		often	en	mes	ly	er
1	A.D.O.	12	18	27	14	29
2	B.D.O.	13	21	35	7	24
3	Agril supervisor	18	11	24	37	10
4	Agril officer (T & V)	41	9	6	31	13
5	Agril scientist	21	14	8	21	36
6	Fertilizer dealer	61	17	4	12	6

Table 6.10: Contact with extension personal

7	Private	9	11	6	21	53
	company(seed/pesticide)					

Discussion:

Table 6.10, it showed that, in case of selected respondents the majority of the respondents never (29%) had contact with Agriculture development officer (A.d.o.), followed by sometimes (27%) had contact with Agriculture development officer (A.d.o.), often (18%) had contact with Agriculture development officer (A.d.o.), rarely (14%) had contact with Agriculture development officer (A.d.o.) and most often (12%) had contact with Agriculture development officer with Agriculture development officer (A.d.o.)

In case of selected respondents the majority of the respondents sometimes (35%) had contact with Block development officer (B.d.o.), followed by never (24%) had contact with Block development officer (B.d.o.), often (21%) had contact with Block development officer (B.d.o.), most often (13%) had contact with Block development officer (B.d.o.) and rarely (7%) had contact with Block development officer (B.d.o.).

In case of selected respondents the majority of the respondents rarely (37%) had contact with agril supervisor, followed by sometimes (24%) had contact with agril supervisor, most often (18%) had contact with agril supervisor, often (11%) had contact with agril supervisor and never (10%) had contact with agril supervisor.

In case of selected respondents the majority of the respondents most often (41%) had contact with agril officer (t & v), followed by rarely (31%) had contact with agril officer (t & v), never (13%) had contact with agril officer (t & v), often (9%) had contact with agril officer (t & v), and sometimes (6%) had contact with agril officer (t & v).

In case of selected respondents the majority of the respondents never (36%) had contact with agril scientist, followed by rarely and most often (21%) had contact with agril scientist, often (14%) had contact with agril scientist, and sometimes (8%) had contact with agril scientist.

In case of selected respondents the majority of the respondents most often (61%) had contact with fertilizer dealer, followed by often (17%) had contact with fertilizer dealer, rarely (12%) had contact with fertilizer dealer, never (6%) had contact with fertilizer dealer, and sometimes (4%) had contact with fertilizer dealer.

In case of selected respondents the majority of the respondents never (53%) had contact with private company (seed/pesticide), followed by rarely (21%) had contact with private company (seed/pesticide), often (11%) had contact with private company (seed/pesticide), most often (9%) had contact with private company (seed/pesticide), and sometimes (6%) had contact with private company (seed/pesticide).

Descriptive statistics									
Variables	N	Minimu m	Maximu m	Mean	Std. deviatio n	CV (%)			
Age (X ₁)	10 0	40	75	54.49	9.44933 3	17.3414 1			
Education (X ₂)	10 0	0	16	8.65	3.88168 8	44.875			
Family education status (X ₃)	10 0	1.4	4.75	3.2301	0.92540 2	28.6493 3			
Primary occupation (X ₄₁)	10 0	1	6	3.72	1.54324 3	41.4850 4			
Secondary occupation (X ₄₂)	10 0	0	5	3.8	1.66733 3.	43.8771 9			
Caste (X ₅)	10 0	1	4	2.68	1.03807 5	38.7341 5			
Family type (X ₆)	10 0	1	2	1.42	0.49355 9	34.7576 4			
Family size (X ₇)	10 0	2	13	6.43	3.13450 2	48.7480 8			
Family income primary (X ₈₁)	10 0	247.8	15000	3060.24 9	2354.3	76.9316 4			
Family income secondary (X ₈₂)	10 0	0	7032.5	1091.37 5	1098.44 1	100.647 4			
Farm Size (X ₉)	10 0	0.4	10	2.8758	2.45388 4	85.3287 3			

Table 6.11: Descriptive analysis of the independent and dependent variables (Conventional method of rice)

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 278

			k.	1		,ı
Social participation (X ₁₀)	10 0	0	4	1.17	1.14065 8	97.4921 1
Risk orientation (X ₁₁)	10 0	1	7	4.074	1.5304	37.5650 5
Index of farm mechanizatio n (X ₁₂)	10 0	20	96	50.52	19.3945 8	38.3899
Cropping intensity (X ₁₃)	10 0	42.92	200	95.3743	32.0506 4	33.6051 2
Selling% (X ₁₄)	10 0	45	95.7	78.002	10.9309 9	14.0137 3
Debt (X ₁₅)	10 0	0	1	0.7	0.45825 8	65.4653 7
Migration (X ₁₆)	10 0	0	1	0.12	0.32496 2	270.801 6
Mass media exposure (X ₁₇)	10 0	0.33	3.33	1.6104	0.66919 3	41.5544 8
Utilization of personal cosmopolite sources of information (X ₁₈)	10 0	0.2	3	1.52	0.78993 7	51.9695 2
Utilization of personal localite sources of information (X ₁₉)	10	0.25	3	1.694	0.76971 7	45.4378 3

Contact with extension personal (X ₂₀)	10	0.14	3.71	1.6409	0.92337 2	56.2723
Seed rate% (X ₂₁)	10 0	90	157.5	119.35	16.9064 3	14.1654 2

		Desci	riptive st	atistics		
Variables	N	Minimu m	Maximu m	Mean	Std. deviati on	CV (%)
Fertilizer% (X ₂₂)	10 0	53.3	133.3	96.212	18.6836 1	19.41921
Pesticide% (X ₂₃)	10 0	33.3	400	149.74 7	73.8772 5	49.33471
Weed management % (X ₂₄)	10 0	53.3	186.6	107.88 5	27.8444 3	25.80936
Water management % (X ₂₅)	10 0	0	104	58.62	38.0446 5	64.90047
Irrigation index% (X ₂₆)	10 0	0	88.7	39.338	29.1612 1	74.12987
Sowing time (X ₂₇)	10 0	1	4	2.21	1.21074 4	54.78478
Varietal change (X ₂₈)	10 0	0	1	0.58	0.49355 9	85.09629
Farm power (X ₂₉)	10 0	0	6	3.22	1.99789 9	62.04655
Change in rainfall pattern over last 20 year (X ₃₀)	10 0	1	10	7.11	2.62257 5	36.88573

Change pattern in temperature (day/night) over last 20 year (X ₃₁)	10 0	1	10	6.85	2.56271 3	37.41187
Change pattern in weather disaster over last 20 year (X ₃₂)	10	1	10	6.61	2.56863 8	38.85988
Change in seasonal pattern over last 20 year (X ₃₃)	10 0	1	10	6.55	2.47133 6	37.73032
Change pattern in insect/ pests & diseases over last 20 year (X ₃₄)	10	2	10	7.59	1.91882 8	25.281
Change pattern in weed problem over last 20 year (X ₃₅)	10 0	1	10	5.79	2.01640 8	34.82569
Net return from rice (Y ₁)	11()	-13700	72500	4404.6 2	14963.8 2	339.7301
Expenditure on health care (Y ₂)	10 0	140	5500	1281.1 7	810.505 9	63.26.262 94

Table 6.11, it presents the descriptive analysis on the distribution nature of different independent and dependent variables.

The distribution pattern of variable age (X₁) depicts that the minimum age of the respondents was 40 and the maximum was 75. Since the age of the respondents had not been pre-categorized or pre-specified, the distribution of the age was quite natural. The mean age is 54.49 with a standard deviation of 9.449333.The coefficient of variance (CV) has been 17.34141% which indicates that the distribution of the variable has been quite consistent.

The distribution pattern of variable education (X₂) shows the minimum education level is 0 while the maximum is 16. This shows that some of the respondents are illiterate who do not study at all while others studied as high as graduate and above. The mean education is 8.65 with a standard deviation of 3.881688. The coefficient of variance (CV) is 44.875% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family education status (X_3) shows that the minimum rank is 1.4 while the maximum rank is 4.75. This indicates that overall family education status. It shows the minimum education level is from illiterate to graduate and above. The mean family education status is 3.2301 with a standard deviation of 0.925402. The coefficient of variance (CV) is 28.64933% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable primary occupation (X_{41}) shows that the minimum rank is 1 while the maximum rank is 6. This indicates that farmer is minimum labour (1) and maximum doing service (6).The mean primary occupation is 3.72 with the standard deviation of 1.543243. The coefficient of variance (CV) is 41.48504% which indicates that the distribution of variable is consistent.

The distribution pattern of variable secondary occupation (X_{42}) shows that the minimum rank is (0) while the maximum rank is (5). The zero indicates that farmer is not doing any other occupation and 5 indicate that maximum he is doing cultivation. The mean secondary occupation is 3.8 with the standard deviation of 1.667333. The coefficient of variance (CV) is 43.87719% which indicates that the distribution of variable is consistent.

The distribution pattern of variable caste (X_5) shows that the minimum caste of farmer is (1) which means scheduled tribe category while the maximum caste of farmer is (4) which mean having general caste category. The mean caste is 2.68 with the standard deviation of 1.038075. The coefficient of variance (CV) is 38.73415% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family type (X_6) shows that the minimum family type is 1 while the maximum family type is 2. The mean family type is 1.42 with the standard deviation of 0.493559. The coefficient of variance (CV) is 34.75764% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family size (X_7) shows that the minimum family size is 2 while the maximum family size is 13. The mean family size is 6.43 with the standard deviation of 3.134502. The coefficient of variance (CV) is 48.74808% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family income primary (X_{81}) shows that the minimum primary income of the respondent is as low as 247.8 while the maximum is as high as 15000. The mean primary income is 3060.249 with a standard deviation of 2354.3.The coefficient of variance (CV) is 76.93164% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family income secondary (X_{82}) shows that the minimum secondary income of the respondent is as low as 0 while the maximum is as high as 7032.5. The mean secondary income is 1091.375with a standard deviation of 1098.441.The coefficient of variance (CV) is 100.6474% which indicates that the distribution of variable is consistent.

The distribution pattern of variable farm size (X_9) shows that the minimum farm size of the respondent is as low as 0.4 while the maximum is as high as 10 hectare. The mean farm size is 2.8758 with a standard deviation of 2.453884.The coefficient of variance (CV) is 85.32873% which indicates that the distribution of variable is consistent. The distribution pattern of variable social participation (X_{10}) shows that the minimum range is 0 while the maximum range is 4. Zero indicates that some of the respondents had no any social participation while others had as many as wider public leaders. The mean social participation is 1.17 with a standard deviation of 1.140658. The coefficient of variance (CV) is 97.49211% which indicate that the distribution of variable is consistent.

The distribution pattern of variable risk orientation (X_{11}) shows that the minimum range of the risk orientation is 1 and the maximum range is 7. The mean risk orientation value is 4.074 with a standard deviation of 1.5304. The coefficient of variance (CV) is 37.56505% which indicates that the distribution of variable is consistent.

The distribution pattern of variable index of farm mechanization (X₁₂) shows that the minimum range is 20 while the maximum range is 96. The mean index of farm mechanization is 50.52 with a standard deviation of 19.39458. The coefficient of variance (CV) is 38.3899% which indicate that the distribution of variable is consistent.

The distribution pattern of variable cropping intensity (X_{13}) shows that the minimum range is 42.92 while the maximum range is 200. The mean cropping intensity is 95.3743 with a standard deviation of 32.05064. The coefficient of variance (CV) is 33.60512% which indicate that the distribution of variable is consistent.

The distribution pattern of variable selling% (X_{14}) shows that the minimum range is 45 while the maximum range is 95.7. Minimum range indicates that some of the respondents had selling their production with 45% while others had as many as 95.7 % .The mean selling% is 78.002 with a standard deviation of 10.93099. The coefficient of variance (CV) is 14.01373% which indicate that the distribution of variable is consistent.

The distribution pattern of variable debt (X₁₅) shows that the minimum range is 0 while the maximum range is 1. Minimum range indicates that some of the respondents do not have any type debt while some of the respondents having debt which they had taken from the bank or any other financial agencies for their cultivation practices. The mean value of debt is 0.7 with a standard deviation of 0.458258. The coefficient of variance (CV) is 65.46537% which indicate that the distribution of variable is consistent.

The distribution pattern of variable migration (X₁₆) shows that the minimum range is 0 while the maximum range is 1. Minimum range indicates that some of the respondents do not want to migrate from one place to another place while some of the respondents want to migrate from one place to another place due to highly impact of climate change on their net return from rice production. The mean value of migration is 0.12 with a standard deviation of 0.324962. The coefficient of variance (CV) is 270.8016% which indicate that the distribution of variable is consistent. The distribution pattern of variable mass media exposure (X_{17}) shows that some of the respondents had a media exposure as low as 0.33 while others had as high as 3.33. The mean value is 1.6104 with a standard deviation of 0.669193. The coefficient of variance (CV) is 41.55448% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable utilization of personal cosmopolite sources of information (X_{18}) shows that some of the respondents had a utilization of personal cosmopolite sources of information as low as 0.2 while others had as high as 3. The mean value is 1.52 with a standard deviation of 0.789937. The coefficient of variance (CV) is 51.96952% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable utilization of personal localite sources of information (X_{19}) shows that some of the respondents had a utilization of personal localite sources of information as low as 0.25 while others had as high as 3. The mean value is 1.694 with a standard deviation of 0.769717. The coefficient of variance (CV) is 45.43783% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable contact with extension personal (X_{20}) shows that some of the respondents had a contact with extension personal as low as 0.14 while others had as high as 3.71. The mean value is 1.6409 with a standard deviation of 0.923372. The coefficient of variance (CV) is 56.2723% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable seed rate% (X_{21}) shows that some of the respondents had a seed rate % as low as 90% while others had as high as 157.5% as per the recommended seed rate is 40 Kg/h. The mean value is 119.35 with a standard deviation of 16.90643. The coefficient of variance (CV) is 14.16542% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable fertilizer% (X_{22}) shows that some of the respondents had a fertilizer % as low as 53.3 % while others had as high as 133.3% as per the state govt. recommended fertilizer dose is (100 kg N, 50 Kg P, & 50 Kg K/h.). The mean value is 96.212 with a standard deviation of 18.68361. The coefficient of variance (CV) is 19.41921% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable pesticide% (X_{23}) shows that some of the respondents had a pesticide % as low as 33.3% while others had as high as 400% as per the state govt. recommended pesticide dose is (Fungicide-Tricyclazole WP 75-0.6g/litre).The mean value is 149.747 with a standard deviation of 73.87725. The coefficient of variance (CV) is 49.33471% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable weed management% (X_{24}) shows that some of the respondents had a weed management% as low as 53.3% while others had as high as 186.6% as per the state govt. recommended herbicide dose is 1.5 kg (a.i.) per hectare. The mean value is 107.885 with a standard deviation of

27.84443. The coefficient of variance (CV) is 25.80936% which indicates that the distribution of the variable is consistent

The distribution pattern of variable water management% (X_{25}) shows that some of the respondents had a water management% as low as 0% while others had as high as 104% as per the state govt. recommended water management required in every crop growth stages. Zero indicate that some of the respondents do not have the irrigation sources and fully dependent on rainfall. The mean value is 58.62 with a standard deviation of 38.04465. The coefficient of variance (CV) is 64.90047% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable irrigation index (X₂₆) shows that some of the respondents had an irrigation index as low as 0 % while others had as high as 88.7%. Zero indicates that some of the respondents do not have the irrigation sources. The mean value is 39.338 with a standard deviation of 29.16121. The coefficient of variance (CV) is 74.12987% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable sowing time (X_{27}) shows that some of the respondents had a sowing time as low as 1 while others had as high as 4. Rank 1 indicates the sowing time is in between 15 June to 25 June while rank 4 indicates the sowing time is in between 16 July to 25 July. The mean value is 2.21 with a standard deviation of 1.210744. The coefficient of variance (CV) is 54.78478% which indicates that the distribution of the variable is consistent. The distribution pattern of variable varietal change (X_{28}) shows that some of the respondents had a varietal change as low as 0 % while others had as high as 1. Zero indicates that some of the respondents had been changed the variety every year due to any other reason while 1 indicates that some of the respondents had been changed the variety every year due to climate change. The mean value is 0.58 with a standard deviation of 0.493559. The coefficient of variance (CV) is 85.09629% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable farm power (X_{29}) shows that some of the respondents had a farm power as low as 0% while others had as high as 6. Zero indicates that some of the respondents do not have the draught animal while 6 indicate as high as 5-6 draught animals. The mean value is 3.22 with a standard deviation of 1.997899. The coefficient of variance (CV) is 62.04655% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change in rainfall pattern over last 20 year (X_{30}) shows that some of the respondents had a change in rainfall pattern over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change in rainfall pattern for minimum (1) and maximum (10) in 0-10 scale. The mean value is 7.11 with a standard deviation of 2.622575. The coefficient of variance (CV) is 36.88573% which indicates that the distribution of the variable is consistent. The distribution pattern of variable change pattern in temperature (day/night) over last 20 year (X_{31}) shows that some of the respondents had a change pattern in temperature (day/night) over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in temperature (day/night) for minimum (1) and maximum (10) in 0-10 scale. The mean value is 6.85 with a standard deviation of 2.562713. The coefficient of variance (CV) is 37.41187% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change pattern in weather disaster over last 20 year (X_{32}) shows that some of the respondents had a change pattern in weather disaster over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in weather disaster for minimum (1) and maximum (10) in 0-10 scale. The mean value is 6.61 with a standard deviation of 2.568638. The coefficient of variance (CV) is 38.85988% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change in seasonal pattern over last 20 year (X_{33}) shows that some of the respondents had a change in seasonal pattern over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change in seasonal pattern for minimum (1) and maximum (10) in 0-10 scale. The mean value is 6.55 with a standard deviation of 2.471336. The coefficient of variance (CV) is 37.73032% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change pattern in insect/ pests & diseases over last 20 year (X_{34}) shows that some of the respondents had a change pattern in insect/ pests & diseases over last 20 year as low as 2 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in insect/ pests & diseases for minimum level (1) and maximum level (10) in 0-10 scale. The mean value is 7.59 with a standard deviation of 1.918828. The coefficient of variance (CV) is 25.281% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change pattern in weed problem over last 20 year (X_{35}) shows that some of the respondents had a change pattern in weed problem over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in weed problem for minimum level (1) and maximum level 10 in 0-10 scales. The mean value is 5.79 with a standard deviation of 2.016408. The coefficient of variance (CV) is 34.82569% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable net return from rice (Y_1) shows that some of the respondents had a net return from rice as low as -13700 while others had as high as 72500. Negative sign is for fully loss in rice production due to climate change. The mean value is 4404.62 with a standard deviation of 14963.82.

The coefficient of variance (CV) is 339.7301% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable expenditure on health care (Y_2) shows that some of the respondents had expenditure on health care as low as 140 while others had as high as 5500. The mean value is 1281.17 with a standard deviation of 810.5059. The coefficient of variance (CV) is 63.26.26294% which indicates that the distribution of the variable is consistent.

Table 6.12: Descriptive analysis of the independent and dependent variables (SRI) System of rice intensification method

	Descriptive statistics								
Variables	N	Minimu m	Maximu m	Mean	Std. deviatio n	CV (%)			
Age (X ₁)	100	41	78	56.15	9.83	17.51			
Education (X ₂)	100	0	16	8.42	4.03	47.90			
Family education status (X ₃)	100	1	4.75	2.70	0.98	36.17			
Primary occupation (X ₄₁)	100	1	6	4.04	1.44	35.68			
Secondary occupation (X ₄₂)	100	0	5	3.47	2.04	58.84			
Caste (X ₅)	100	1	4	2.61	1.09	41.58			
Family type(X ₆)	100	1	2	1.46	0.50	34.14			

				1		
Family size(X ₇)	100	2	13	6.02	2.87	47.74
Family income primary (X ₈₁)	100	219.85	13864.3	4543.6 2	3424.09	75.36
Family income secondary (X ₈₂)	100	0	8533.33	803.15	1183.27	147.3 3
Farm size (X ₉)	100	0.4	6.87	2.27	1.55	68.55
Social participation (X ₁₀)	100	0	4	1.40	1.36	96.89
Risk orientation (X ₁₁)	100	1	7	3.79	1.99	52.57
Index of farm mechanizatio n (X ₁₂)	100	24	98	58.08	19.83	34.15
Cropping intensity (X ₁₃)	100	50	175.7	98.02	27.50	28.06
Selling% (X ₁₄)	100	40	93.8	75.63	13.29	17.57
Debt (X ₁₅)	100	0	1	0.79	0.41	51.56
Migration (X ₁₆)	100	0	1	0.08	0.27	337.5
Mass media exposure (X ₁₇)	100	0.33	3.16	1.72	0.70	40.98
Utilization of personal cosmopolite sources of information (X ₁₈)	100	0.2	3	1.48	0.85	57.67

Utilization of personal localite sources of information (X ₁₉)	100	0.25	3	1.61	0.83	51.67
Contact with extension personal (X ₂₀)	100	0.14	3.42	1.40	0.76	53.95
Seed rate% (X ₂₁)	100	100	480	221.00	96.27	43.56
Fertilizer% (X ₂₂)	100	53.3	130.3	94.60	15.45	16.33
Pesticide% (X ₂₃)	100	70	240	116.70	36.53	31.30
Weed management % (X ₂₄)	100	72.6	193.3	110.66 8	25.43	22.99
Water management % (X ₂₅)	100	62.5	125	95.02	13.27	13.96
Irrigation index% (X ₂₆)	100	40	100	85.79	13.82	16.11
Sowing time (X ₂₇)	100	1	3	1.92	0.82	42.75
Varietal change (X ₂₈)	100	0	1	0.64	0.48	75.00

		Descri	otive stati	stics		
Variables	N	Minimu m	Maximu m	Mean	Std. deviatio n	CV (%)
Farm power (X ₂₉)	100	0	6	2.70	2.01	74.35
Change in rainfall pattern over last 20 year (X ₃₀)	100	1	10	7.01	2.16	30.83
Change pattern in temperature (day/night) over last 20 year (X ₃₁)	100	1	10	6.27	2.22	35.44
Change pattern in weather disaster over last 20 year (X ₃₂)	100	1	10	6.09	2.36	38.79
Change in seasonal pattern over last 20 year (X ₃₃)	100	1	10	6.11	2.39	39.14
Change pattern in insect/ pests & diseases over last 20 year (X ₃₄)	100	2	10	8.01	2.28	28.44

			r			
Change						
pattern in						
weed	100					
problem over						
last 20 year						
(X ₃₅)		4	10	8.49	1.57	18.51
Net return	100			36830.2	28804.8	
from rice(Y ₁)	100	-4600	120000	2	7	78.21
Expenditure						
on health	100					
care (Y ₂)		112.5	3125	1064.42	482.45	45.33

Table 6.12, it presents the descriptive analysis on the distribution nature of different independent and dependent variables.

The distribution pattern of variable age (X_1) depicts that the minimum age of the respondents was 41 and the maximum was 78. Since the age of the respondents had not been precategorized or pre-specified, the distribution of the age was quite natural. The mean age is 56.15 with a standard deviation of 9.83.The coefficient of variance (CV) has been 17.51% which indicates that the distribution of the variable has been quite consistent.

The distribution pattern of variable education (X_2) shows the minimum education level is 0 while the maximum is 16. This shows that some of the respondents are illiterate who do not study at all while others studied as high as graduate and above. The mean education is 8.42 with a standard deviation of 4.03.

The coefficient of variance (CV) is 47.90% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family education status (X_3) shows that the minimum rank is 1 while the maximum rank is 4.75. This indicates that overall family education status. It shows the minimum education level is from illiterate to graduate and above. The mean family education status is 2.70 with a standard deviation of 0.98. The coefficient of variance (CV) is 36.17% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable primary occupation (X_{41}) shows that the minimum rank is 1 while the maximum rank is 6. This indicates that farmer is minimum labour (1) and maximum doing service (6).The mean primary occupation is 4.04 with the standard deviation of 1.44. The coefficient of variance (CV) is 35.68% which indicates that the distribution of variable is consistent.

The distribution pattern of variable secondary occupation (X_{42}) shows that the minimum rank is (0) while the maximum rank is (5). The zero indicates that farmer is not doing any other occupation and 5 indicate that maximum he is doing cultivation. The mean secondary occupation is 3.47 with the standard deviation of 2.04. The coefficient of variance (CV) is 58.84% which indicates that the distribution of variable is consistent.

The distribution pattern of variable Caste (X_5) shows that the minimum caste of farmer is (1) which means scheduled tribe

category while the maximum caste of farmer is (4) which mean having general caste category. The mean caste is 2.61 with the standard deviation of 1.09. The coefficient of variance (CV) is 41.58% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family type (X_6) shows that the minimum family type is 1 while the maximum family type is 2. The mean family type is 1.46 with the standard deviation of 0.50. The coefficient of variance (CV) is 34.14% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family size (X_7) shows that the minimum family size is 2 while the maximum family size is 13. The mean family size is 6.02 with the standard deviation of 2.87. The coefficient of variance (CV) is 47.74% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family income primary (X_{81}) shows that the minimum primary income of the respondent is as low as 219.85 while the maximum is as high as 13864.3. The mean primary income is 4543.62 with a standard deviation of 3424.09 .The coefficient of variance (CV) is 75.36% which indicates that the distribution of variable is consistent.

The distribution pattern of variable family income secondary (X_{82}) shows that the minimum secondary income of the respondent is as low as 0 while the maximum is as high as 8533.33. The mean secondary income is 803.15 with a standard

deviation of 1183.27. The coefficient of variance (CV) is 147.33% which indicates that the distribution of variable is consistent.

The distribution pattern of variable farm size (X_9) shows that the minimum farm size of the respondent is as low as 0.4 while the maximum is as high as 6.87 hectare. The mean farm size is 2.27 with a standard deviation of 1.55.The coefficient of variance (CV) is 68.55% which indicates that the distribution of variable is consistent.

The distribution pattern of variable social participation (X_{10}) shows that the minimum range is 0 while the maximum range is 4. Zero indicates that some of the respondents had no any social participation while others had as many as wider public leaders. The mean social participation is 1.40 with a standard deviation of 1.36. The coefficient of variance (CV) is 96.89% which indicate that the distribution of variable is consistent.

The distribution pattern of variable risk orientation (X_{11}) shows that the minimum range of the risk orientation is 1 and the maximum range is 7. The mean risk orientation value is 3.79 with a standard deviation of 1.99. The coefficient of variance (CV) is 52.57% which indicates that the distribution of variable is consistent.

The distribution pattern of variable index of farm mechanization (X_{12}) shows that the minimum range is 24 while the maximum range is 98.the mean index of farm mechanization is 58.08 with a standard deviation of 19.83. The coefficient of

variance (CV) is 34.15% which indicate that the distribution of variable is consistent.

The distribution pattern of variable cropping intensity (X_{13}) shows that the minimum range is 50 while the maximum range is 175.7. The mean cropping intensity is 98.02 with a standard deviation of 27.50. The coefficient of variance (CV) is 28.06% which indicate that the distribution of variable is consistent.

The distribution pattern of variable selling% (X_{14}) shows that the minimum range is 40 while the maximum range is 93.8. Minimum range indicates that some of the respondents had selling their production with 40% while others had as many as 93.8% .The mean selling% is 75.63 with a standard deviation of 13.29. The coefficient of variance (CV) is 17.57% which indicate that the distribution of variable is consistent.

The distribution pattern of variable debt (X₁₅) shows that the minimum range is 0 while the maximum range is 1. Minimum range indicates that some of the respondents do not have any type debt while some of the respondents having debt which they had taken from the bank or any other financial agencies for their cultivation practices. The mean value of debt is 0.79 with a standard deviation of 0.41. The coefficient of variance (CV) is 51.56% which indicate that the distribution of variable is consistent.

The distribution pattern of variable migration (X_{16}) shows that the minimum range is 0 while the maximum range is 1. Minimum range indicates that some of the respondents do not want to migrate from one place to another place while some of the respondents want to migrate from one place to another place due to highly impact of climate change on their net return from rice production. The mean value of migration is 0.08 with a standard deviation of 0.27. The coefficient of variance (CV) is 337.5% which indicate that the distribution of variable is consistent.

The distribution pattern of variable mass media exposure (X_{17}) shows that some of the respondents had a media exposure as low as 0.33 while others had as high as 3.16. The mean value is 1.72 with a standard deviation of 0.70. The coefficient of variance (CV) is 40.98% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable utilization of personal cosmopolite sources of information (X_{18}) shows that some of the respondents had a utilization of personal cosmopolite sources of information as low as 0.2 while others had as high as 3. The mean value is 1.48 with a standard deviation of 0.85. The coefficient of variance (CV) is 57.67% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable utilization of personal localite sources of information (X_{19}) shows that some of the respondents had a utilization of personal localite sources of information as low as 0.25 while others had as high as 3. The mean value is 1.61 with a standard deviation of 0.83. The coefficient of variance (CV) is 51.67% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable contact with extension personal (X_{20}) shows that some of the respondents had a contact with extension personal as low as 0.14 while others had as high as 3.42. The mean value is 1.40 with a standard deviation of 0.76. The coefficient of variance (CV) is 53.95% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable seed rate% (X_{21}) shows that some of the respondents had a seed rate% as low as 100% while others had as high as 480% as per the recommended seed rate is 5 Kg/h. The mean value is 221.00 with a standard deviation of 96.27. The coefficient of variance (CV) is 43.56% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable fertilizer% (X_{22}) shows that some of the respondents had a fertilizer% as low as 53.3% while others had as high as 130.3% as per the state govt. it required 8 to 10 metric tonne organic manure/ hectare before puddling in the field. 3kg azospyrilym/ hectare and another use of green manuring crop- *Subabul, dhencha, boru* etc. If it is not possible then use 50 % green manuring and 50 % recommended dose of N, P & k. (100:5050).The mean value is 94.60 with a standard deviation of 15.45. The coefficient of variance (CV) is 16.33% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable pesticide% (X_{23}) shows that some of the respondents had a pesticide% as low as 70 % while others had as high as 240 % as per the state govt. recommended pesticide dose is (Insecticide-Carbofuron 3g @

1kg (a.i) per hectare. The mean value is 116.70 with a standard deviation of 36.53. The coefficient of variance (CV) is 31.30% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable weed management% (X_{24}) shows that some of the respondents had a weed management% as low as 72.6% while others had as high as 193.3% as per the state govt. recommended herbicide dose is 1.5 kg (a.i.) per hectare. The mean value is 110.668 with a standard deviation of 25.43. The coefficient of variance (CV) is 22.99% which indicates that the distribution of the variable is consistent

The distribution pattern of variable water management% (X_{25}) shows that some of the respondents had a water management% as low as 62.5% while others had as high as 125% as per the state govt. recommended water management required in every crop growth stages. The mean value is 95.02 with a standard deviation of 13.27. The coefficient of variance (CV) is 13.96% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable irrigation index (X_{26}) shows that some of the respondents had an irrigation index as low as 40% while others had as high as 100%. The mean value is 85.79 with a standard deviation of 13.82. The coefficient of variance (CV) is 16.11% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable sowing time (X_{27}) shows that some of the respondents had a sowing time as low as 1 while others had as high as 3. Rank 1 indicates the sowing time is in between 15 July to 23 July while rank 3 indicates the sowing time is in between 1 August to 8 August. The mean value is 1.92 with a standard deviation of 0.82. The coefficient of variance (CV) is 42.75% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable varietal change (X_{28}) shows that some of the respondents had a varietal change as low as 0% while others had as high as 1. Zero indicates that some of the respondents had been changed the variety every year due to any other reason while 1 indicates that some of the respondents had been changed the variety every year due to climate change. The mean value is 0.64 with a standard deviation of 0.48. The coefficient of variance (CV) is 75.00% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable farm power (X_{29}) shows that some of the respondents had a farm power as low as 0% while others had as high as 6. Zero indicates that some of the respondents do not have the draught animal while 6 indicate as high as 5-6 draught animals. The mean value is 2.70 with a standard deviation of 2.01. The coefficient of variance (CV) is 74.35% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change in rainfall pattern over last 20 year (X_{30}) shows that some of the respondents had a change in rainfall pattern over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent

response over the change in rainfall pattern for minimum (1) and maximum (10) in 0-10 scale. The mean value is 7.01 with a standard deviation of 2.16. The coefficient of variance (CV) is 30.83% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change pattern in temperature (day/night) over last 20 year (X_{31}) shows that some of the respondents had a change pattern in temperature (day/night) over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in temperature (day/night) for minimum (1) and maximum (10) in 0-10 scale. The mean value is 6.27 with a standard deviation of 2.22. The coefficient of variance (CV) is 35.44% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change pattern in weather disaster over last 20 year (X_{32}) shows that some of the respondents had a change pattern in weather disaster over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in weather disaster for minimum (1) and maximum (10) in 0-10 scale. The mean value is 6.09 with a standard deviation of 2.36. The coefficient of variance (CV) is 38.79% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change in seasonal pattern over last 20 year (X_{33}) shows that some of the respondents had a

change in seasonal pattern over last 20 year as low as 1 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change in seasonal pattern for minimum (1) and maximum (10) in 0-10 scale. The mean value is 6.11 with a standard deviation of 2.39. The coefficient of variance (CV) is 39.14% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable Change pattern in insect/ pests & diseases over last 20 year (X_{34}) shows that some of the respondents had a change pattern in insect/ pests & diseases over last 20 year as low as 2 while others had as high as 10. Rank 1 & 10 indicates the respondent response over the change pattern in insect/ pests & diseases for minimum level (2) and maximum level (10) in 0-10 scale. The mean value is 8.01 with a standard deviation of 2.28. The coefficient of variance (CV) is 28.44% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable change pattern in weed problem over last 20 year (X_{35}) shows that some of the respondents had a change pattern in weed problem over last 20 year as low as 4 while others had as high as 10. The mean value is 8.49 with a standard deviation of 1.57. The coefficient of variance (CV) is 18.51% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable net return from rice (Y_1) shows that some of the respondents had a net return from rice as

low as -4600 while others had as high as 120000. The mean value is 36830.22 with a standard deviation of 28804.87. The coefficient of variance (CV) is 78.21% which indicates that the distribution of the variable is consistent.

The distribution pattern of variable expenditure on health care (Y_2) shows that some of the respondents had expenditure on health care as low as 112.5 while others had as high as 3125. The mean value is 1064.42 with a standard deviation of 482.45. The coefficient of variance (CV) is 45.33% which indicates that the distribution of the variable is consistent.

Variables	r value	Remarks
Age(X ₁)	-0.1005	
Education (X ₂)	0.2067	*
Family education status (X ₃)	-0.1113	
Primary occupation (X ₄₁)	0.1442	
Secondary occupation (X ₄₂)	-0.3941	* *
Caste (X ₅)	0.1450	
Family type(X ₆)	0.1131	
Family size (X7)	0.1508	
Family income primary (X ₈₁)	0.1132	
Family income secondary (X ₈₂)	0.0010	
Farm size(X ₉)	0.3499	* *
Social participation (X ₁₀)	0.2223	*
Risk orientation (X ₁₁)	0.1937	
Index of farm mechanization (X_{12})	0.0069	
Cropping intensity (X ₁₃)	-0.0296	
Selling% (X ₁₄)	0.1717	
Debt (X ₁₅)	-0.1431	
Migration (X ₁₆)	-0.2450	*

Table 6.13: Co-efficient of correlation: Net return from rice (y₁) vrs.35 predictor variables. (Conventional method of rice)

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 308

		1
Mass media exposure (X ₁₇)	0.0004	
Utilization of personal cosmopolite		
sources of information (X ₁₈)	0.0676	
Utilization of personal localite sources		
of information (X ₁₉)	0.1146	
Contact with extension personal (X ₂₀)	0.1693	
Seed rate% (X ₂₁)	-0.0998	
Fertilizer% (X ₂₂)	0.0579	
Pesticide% (X ₂₃)	0.0394	
Weed management%(X ₂₄)	0.2122	*
Water management% (X ₂₅)	0.3430	* *
Irrigation index% (X ₂₆)	0.3819	* *
Sowing time (X ₂₇)	0.0269	

Variables	R value	Remarks
Age(X ₁)	0.014	
Education((X ₂)	0.072	
Family Education Status (X ₃)	0.051	
Primary Occupation (X ₄₁)	-0.009	
Secondary Occupation(X ₄₂)	0.156	*
Caste (X ₅)	-0.009	
Family Type(X ₆)	-0.057	
Family Size(X ₇)	0.078	
Family Income Primary(X ₈₁)	0.069	
Family Income Secondary (X ₈₂)	0.056	
Farm Size(X ₉)	-0.051	
Social Participation(X ₁₀)	-0.081	
Risk Orientation (X ₁₁)	0.021	
Index of Farm Mechanization (X ₁₂)	-0.072	
Cropping Intensity (X ₁₃)	0.104	
Selling %(X ₁₄)		
Debt (X ₁₅)		
Migration (X ₁₆)		
Mass Media Exposure(X ₁₇)		
Utilization of Personal Cosmopolite		
Sources of Information (X ₁₈)		

Utilization of Personal Localite	
Sources of Information(X ₁₉)	
Contact with Extension Personal(X ₂₀)	
Seed Rate %(X ₂₁)	
Fertilizer %(X ₂₂)	
Pesticide% (X ₂₃)	
Weed Management%(X ₂₄)	
Water Management%(X ₂₅)	
Irrigation Index%(X ₂₆)	
Sowing Time(X ₂₇)	

Varietal change (X ₂₈)	- 0.2043	*
	-	
Farm power (X ₂₉)		
Change in rainfall pattern over last 20 year		
(X ₃₀)	0.0346	
Change pattern in temperature (day/night)		
over last 20 year (X ₃₁)	0.1056	
Change pattern in weather disaster over last	-	
20 year (X ₃₂)	0.1088	
Change in seasonal pattern over last 20 year	-	
(X ₃₃)	0.0554	
Change pattern in insect/ pests & diseases	-	
over last 20 year (X ₃₄)	0.0745	
Change pattern in weed problem over last 20		
year (X ₃₅)	0.0495	
** Significant at 1 % loval of significance		

** Significant at 1 % level of significance

* Significant at 5 % level of significance

Discussion

Table 6.13, it presents the correlation between net return from rice (Y_1) and 35 independent variables. It has been found that the variable, farm size, water management%, irrigation index% has recorded a significant and positive correlation with the dependent

variable net return from rice with 1% level of significance, while the variable secondary occupation has recorded a significant and negative correlation with the dependent variable net return from rice with 1% level of significance.

The variable education, social participation, weed management% has recorded а significant and positive correlation with the dependent variable net return from rice with 5% level of significance, while the variable migration, varietal change has recorded a significant and negative correlation with the dependent variable net return from rice with 5% level of significance.

Table 6.14: Co-efficient of correlation: Expenditure on health care (y₂) vrs.35 predictor variables. (Conventional method of rice)

Variables	r value	Remarks
Age (X ₁)	-0.0502	
Education (X ₂)	-0.0942	
Family education status		* *
(X ₃)	0.2991	
Primary occupation (X ₄₁)	0.0714	
Secondary occupation		
(X ₄₂)	0.0133	
Caste (X ₅)	-0.0758	
Family type (X ₆)	-0.4848	* *
Family size (X7)	-0.5437	* *
Family income primary		
(X ₈₁)	0.0450	
Family income secondary		
(X ₈₂)	0.0275	
Farm size(X ₉)	-0.0470	
Social participation (X ₁₀)	-0.1162	
Risk orientation (X ₁₁)	0.1621	

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 311

-0.0995
-0.1110
-0.0549
0.0990
0.1027
-0.0679
-0.1531
0.0679
0.0196
0.0291
0.1215
0.1280
-0.1395
-0.1582
-0.1584
-0.0132

Variables	R value	Remarks
Age(X ₁)	0.014	
Education((X ₂)	0.072	
Family Education Status (X ₃)	0.051	
Primary Occupation (X ₄₁)	-0.009	
Secondary Occupation(X ₄₂)	0.156	*
Caste (X ₅)	-0.009	
Family Type(X ₆)	-0.057	
Family Size(X7)	0.078	
Family Income Primary(X ₈₁)	0.069	
Family Income Secondary (X ₈₂)	0.056	
Farm Size(X ₉)	-0.051	
Social Participation(X ₁₀)	-0.081	

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 312

Risk Orientation (X ₁₁)	0.021	
Index of Farm Mechanization	-0.072	
(X ₁₂)		
Cropping Intensity (X ₁₃)	0.104	
Selling %(X ₁₄)		
Debt (X ₁₅)		
Migration (X ₁₆)		
Mass Media Exposure(X ₁₇)		
Utilization of Personal		
Cosmopolite Sources of		
Information (X ₁₈)		
Utilization of Personal Localite		
Sources of Information(X ₁₉)		
Contact with Extension		
Personal(X ₂₀)		
Seed Rate %(X ₂₁)		
Fertilizer %(X ₂₂)		
Pesticide% (X ₂₃)		
Weed Management%(X ₂₄)		
Water Management%(X ₂₅)		
Irrigation Index%(X ₂₆)		
Sowing Time(X ₂₇)		

Varietal change (X ₂₈)	-0.0759
Farm power (X ₂₉)	0.1321
Change in rainfall pattern over last 20 year (X ₃₀)	0.0597
Change pattern in temperature (day/night) over last 20 year (X_{31})	-0.1350
Change pattern in weather disaster over last 20 year (X_{32})	0.0446
Change in seasonal pattern over last 20 year (X ₃₃)	-0.0148
Change pattern in insect/ pests & diseases over last 20 year (X_{34})	0.0235
Change pattern in weed problem over last 20 year (X_{35})	-0.0865

** Significant at 1 % level of significance

Discussion:

Table 6.14, it presents the correlation between expenditure on health care (Y_2) and 35 independent variables. It has been found that the variable family education status has recorded a significant and positive correlation with the dependent variable expenditure on health care (Y_2) with 1% level of significance, while the variable family type and family size has recorded a significant and negative correlation with the dependent variable expenditure on health care (Y_2) with 1% level of significance.

Table 6.15: Co-efficient of correlation: Net return from rice
(y_1) vrs.35 predictor variables. (SRI method of rice)

Variables	r value	Remarks
Age (X ₁)	-0.2768	*
Education (X ₂)	0.1731	
Family education status (X ₃)	0.0858	
Primary occupation (X ₄₁)	0.3312	* *
Secondary occupation (X ₄₂)	-0.2665	**
Caste (X ₅)	0.1262	
Family type(X ₆)	-0.0523	
Family size (X7)	-0.0320	
Family income primary (X ₈₁)	0.4172	* *
Family income secondary (X ₈₂)	0.0740	
Farm size (X ₉)	0.8902	* *
Social participation (X ₁₀)	0.0336	
Risk orientation (X ₁₁)	0.1481	
Index of farm mechanization (X ₁₂)	-0.0198	
Cropping intensity (X ₁₃)	-0.2767	* *
Selling% (X ₁₄)	-0.1215	
Debt (X ₁₅)	-0.1764	
Migration (X ₁₆)	-0.3646	* *
Mass media exposure (X ₁₇)	0.1880	

Utilization of personal cosmopolite		
sources of information (X ₁₈)	0.0033	
Utilization of personal localite sources of		
information (X_{19})	-0.1826	
Contact with extension personal (X ₂₀)	0.1014	
Seed rate% (X ₂₁)	0.0547	
Fertilizer% (X ₂₂)	-0.0298	
Pesticide% (X ₂₃)	-0.0974	
Weed management% (X ₂₄)	0.2064	*
Water management% (X ₂₅)	-0.1018	
Irrigation index% (X ₂₆)	0.0169	
Sowing time (X ₂₇)	0.0873	

Variables	R value	Remarks
Age(X ₁)	0.014	
Education((X ₂)	0.072	
Family Education Status (X ₃)	0.051	
Primary Occupation (X ₄₁)	-0.009	
Secondary Occupation(X ₄₂)	0.156	*
Caste (X ₅)	-0.009	
Family Type(X ₆)	-0.057	
Family Size(X7)	0.078	
Family Income Primary(X ₈₁)	0.069	
Family Income Secondary	0.056	
(X ₈₂)		
Farm Size(X ₉)	-0.051	
Social Participation(X ₁₀)	-0.081	
Risk Orientation (X ₁₁)	0.021	
Index of Farm Mechanization	-0.072	
(X ₁₂)		
Cropping Intensity (X ₁₃)	0.104	
Selling %(X ₁₄)		
Debt (X ₁₅)		
Migration (X ₁₆)		
Mass Media Exposure(X ₁₇)		

Utilization of Personal	
Cosmopolite Sources of	
Information (X ₁₈)	
Utilization of Personal	
Localite Sources of	
Information(X ₁₉)	
Contact with Extension	
Personal(X ₂₀)	
Seed Rate %(X ₂₁)	
Fertilizer %(X ₂₂)	
Pesticide% (X ₂₃)	
Weed Management%(X ₂₄)	
Water Management%(X ₂₅)	
Irrigation Index%(X ₂₆)	
Sowing Time(X ₂₇)	

Varietal change (X ₂₈)	-0.1596
Farm power (X ₂₉)	-0.1147
Change in rainfall pattern over last 20 year (X ₃₀)	-0.1821
Change pattern in temperature (day/night) over	
last 20 year (X ₃₁)	0.0692
Change pattern in weather disaster over last 20	
year (X ₃₂)	0.1240
Change in seasonal pattern over last 20 year (X_{33})	-0.1564
Change pattern in insect/ pests & diseases over last	
20 year (X ₃₄)	-0.0372
Change pattern in weed problem over last 20 year	
(X ₃₅)	-0.0525

** Significant at 1 % level of significance

* Significant at 5 % level of significance

Discussion:

Table 6.15, It presents the correlation between net return from rice (Y_1) and 35 independent variables. It has been found that the variable primary occupation, family income primary, farm size,

has recorded a significant and positive correlation with the dependent variable net return from rice with 1% level of significance, while the variable secondary occupation, cropping intensity, migration has recorded a significant and negative correlation with the dependent variable net return from rice with 1% level of significance.

The variable weed management% has recorded a significant and positive correlation with the dependent variable net return from rice (Y_1) with 5% level of significance, while the variable age has recorded a significant and negative correlation with the dependent variable net return from rice (Y_1) with 5% level of significance.

Table 6.16: Co-efficient of correlation: Expenditure on health (y₂) vrs.35 predictor variables. (SRI method of rice)

Variables	r value	Remarks
Age (X ₁)	0.2576	*
Education (X ₂)	0.0341	
Family education status (X_3)	0.2994	* *
Primary occupation (X ₄₁)	-0.1650	
Secondary occupation(X ₄₂)	0.2630	* *
Caste (X ₅)	-0.1397	
Family type (X ₆)	-0.4842	* *
Family size (X7)	-0.4916	* *
Family income primary (X ₈₁)	0.2504	*
Family income secondary (X ₈₂)	0.1246	
Farm size (X ₉)	-0.1247	
Social participation (X ₁₀)	0.0224	
Risk orientation (X ₁₁)	-0.0099	
Index of farm mechanization (X ₁₂)	0.0028	
Cropping intensity (X ₁₃)	-0.2176	*

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 317

Selling% (X ₁₄)	0.0614	
Debt (X ₁₅)	-0.0440	
Migration (X ₁₆)	0.0548	
Mass media exposure (X ₁₇)	0.0870	
Utilization of personal cosmopolite		
sources of information (X ₁₈)	-0.0669	
Utilization of personal localite sources of		
information (X ₁₉)	-0.1396	
Contact with extension personal (X ₂₀)	-0.1054	
Seed rate% (X ₂₁)	-0.1546	
Fertilizer% (X ₂₂)	-0.0736	
Pesticide% (X ₂₃)	-0.0519	
Weed management% (X ₂₄)	-0.0992	
Water management% (X ₂₅)	-0.2268	*
Irrigation index% (X ₂₆)	0.0366	
Sowing time (X ₂₇)	0.0603	

-0.0704	
-0.0410	
-0.0611	
	*
0.0942	
r	-0.0410

** Significant at 1 % level of significance

* Significant at 5 % level of significance

Discussion:

Table 6.16, it presents the correlation between expenditure on health care (Y_2) and 35 independent variables. It has been found

that the variable family education status, secondary occupation has recorded a significant and positive correlation with the dependent variable expenditure on health care (Y_2) with 1% level of significance, while the variable family type and family size has recorded a significant and negative correlation with the dependent variable expenditure on health care (Y_2) with 1% level of significance.

The variable age, family income primary, change pattern in temperature (day/night) over last 20 year has recorded a significant and positive correlation with the dependent variable expenditure on health care (Y_2) with 5% level of significance, while the variable cropping intensity, water management has recorded a significant and negative correlation with the dependent variable expenditure on health care (Y_2) with 5% level of significance, of significant and negative correlation with the dependent variable expenditure on health care (Y_2) with 5% level of significant and negative correlation with the dependent variable expenditure on health care (Y_2) with 5% level of significance

Table 6.17: Best fitted regression equation following stepwise model of multiple regression equation for selecting most significant variables having prominent regression impact on consequent variable Net return from rice (Y_1) and Expenditure on health care (Y_2).

(Conventional method of rice)								
Depende nt variable(Y)	Regression equation(Step wise)	Variable	R ²	Adj. R ²	SE(est .)	Ranking of importa nt depend ent regress ors		

Net return from rice (Y ₁)	2234.59X ₄₂ +1	Social	0.3	0.29 2	12657. 83	Y ₁ =X ₄₂ > X ₂₆ >X ₁₀ > X ₂₄
Expendit ure on health care (Y ₂)	159.21 X ₇ +93.63 X ₁₁ -	(X ₇)- Family size (X ₁₁)- Risk orientation (X ₈₁)- Family income primary	0.3 55	0.33 5	664.33	Y ₂ =X ₇ > X ₁₁ >X ₈₁

Two equations can identify the important predictors to explain Y for Conventional method of rice in the light of climate change.

Discussion:

Table 6.17, it concluded that net return from rice (Y_1) is explained by the variable irrigation index% (X_{26}) , social participation (X_{10}) and the variable weed management% (X_{24}) with their positive contribution towards net return from rice (Y_1) in the light of climate change, while the variable secondary occupation (X_{42}) with its negative impact towards reducing the magnitude of net return from rice (Y_1) in the light of climate change. Total variance explained by such equation is 32% and all predictors in this equation have resulted significant regression coefficient to explain net return from Rice (Y_1) in the light of climate change.

Then it can be further concluded that expenditure on health care (Y_2) is explained by the variable risk orientation (X_{11}) with their positive contribution towards expenditure on health care (Y_2) in the light of climate change, while the variable family size (X_7) and family income primary (X_{81}) with its negative impact towards reducing the magnitude of expenditure on health care (Y_2) in the light of climate change. Total variance explained by such equation is 35.50% and all predictors in this equation have resulted significant regression coefficient to explain expenditure on health care (Y_2) in the light of climate change.

Table 6.18: Best fitted regression equation following stepwise model of multiple regression equation for selecting most significant variables having prominent regression impact on consequent variable Net return from rice (Y_1) and Expenditure on health care (Y_2).

(System of rice intensification method)							
Depend ent variable (Y)	Regression equation(Step wise)	Variabl e	R²	Adj. R ²	SE(es t.)	Rankin g of importa nt depend ent regress ors	

Net return from Rice (Y 1)		(X_9) - Farm size (X_{16}) - Migratio n (X_{81}) - Family income primary (X_{19}) - Utilizati on of personal localite sources of informat ion	0.8 38	0.83	11891. 36	$Y_1 = X_9 > X_{16} > X_{81} > X_{19}$
ure	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0.3 24	0.30 3	404.74	$Y_2 = X_7 > X$ 42 $> X_{13}$

Two equations can identify the important predictors to explain Y for System of rice Intensification method in the light of climate change.

Discussion

Table 6.18, it concluded that net return from rice (Y_1) is explained by the variable farm size (X_9) and family income primary (X_{81}) with their positive contribution towards net return from rice (Y_1) in the light of climate change, while the variable migration (X_{16}) and utilization of personal localite sources of information (X_{19}) with its negative impact towards reducing the magnitude of net return from rice (Y_1) in the light of climate change. Total variance explained by such equation is 83.80% and all predictors in this equation have resulted significant regression coefficient to explain net return from rice (Y_1) in the light of climate change.

Then it can be further concluded that expenditure on health care (Y_2) is explained by the variable secondary occupation (X_{42}) with their positive contribution towards expenditure on health care (Y_2) in the light of climate change, while the variable family size (X_7) and cropping intensity% (X_{13}) with its negative impact towards reducing the magnitude of expenditure on health care (Y_2) in the light of climate change. Total variance explained by such equation is 32.40% and all predictors in this equation have resulted significant regression coefficient to explain expenditure on health care (Y_2) in the light of climate change.

Table 6.19: Path analysis: direct, indirect and residual effect: exogenous variables (X_1-X_{35}) vs. Net return from rice (Y_1)

Conventional method of rice

		Total		Substantial Indirect Effect			
Variables	Total Effec t	Direc t Effec t	Total Indirec t Effect	1	11	111	
Age (X ₁)	- 0.10 1	- 0.008	-0.093	0.05046 1 X ₂₂	0.038142 X ₃₄	0.02431 8 X ₉	
Education (X ₂)	0.20 7	0.092	0.114	0.09350 7 X ₁₀	0.079021 X ₉	0.04916 1 X ₂₆	
Family education status (X ₃)	- 0.11 1	- 0.034	-0.077	0.05789 8 X ₆	0.047439 X ₂₆	0.02905 3 X ₈₂	
Primary Occupation (X ₄₁)	0.14 4	- 0.122	0.266	0.20541 9 X ₄₂	0.092886 X ₉	0.04063 1 X ₆	
Secondary occupation (X ₄₂)	- 0.39 4	- 0.344	-0.050	0.08510 2 X ₁₃	0.072809 X ₄₁	0.03755 9 X ₈₂	
Caste (X ₅)	0.14 5	- 0.017	0.162	0.03474 5 X ₁₀	0.03067 X ₃₅	0.02509 5 X ₁₃	
Family type(X ₆)	0.11 3	- 0.275	0.388	0.18284 5 X ₇	0.058651 X ₃₁	0.04915 6 x ₂₆	
Family Size (X ₇)	0.15 1	0.207	-0.056	0.05002 1 X ₃₁	0.042354 X ₈₁	0.03618 X ₁₃	
Family income primary (X ₈₁)	0.11 3	- 0.115	0.228	0.17855 6 X ₉	0.091007 X ₆	0.06069 2 X ₈₂	

	1	1			<u> </u>	1
Family				0.04774	0.034857	0.02601
income				9	X ₆	7
secondary	0.00			X ₂₆		X ₄₁
(X ₈₂)	1	0.119	-0.118			
				0.15764	0.047867	0.03777
Farm size	0.35			4	X ₁₀	1
(X ₉)	0	0.385	-0.035	X ₄₂		X ₂₂
Social	_			0.10935	0.051297	0.04089
	0.22			9	X2	2
$n(X_{10})$	2	0.168	0 054	У Х ₉	×2	– X ₄₂
Risk	2	0.100	0.001	0.08647	0.070288	0.05468
-	0.19			X ₂₆	X ₄₂	5
(X ₁₁)	4	0.066	0 1 2 9	A 26	A 42	Х ₉
Index of		0.000	0.120	0.16407	0.057954	<u>7</u> 9 0.03281
farm	0.00			1	X ₄₂	8
mechanizati		-	0 007	X9		X ₁₇
on (X ₁₂)	7	0.221	0.227			/
Cropping	-			0.05899	0.049849	0.02796
intensity	0.03			8	X ₁₂	X18
(X ₁₃)	0	0.283	-0.313	X ₂₆		
Selling%				0.06950	0.031568	0.02625
(X ₁₄)	0.17			8	X ₇	1
(~14)	2	0.116	0.056	X ₉		X ₂₆
	-			0.03002	0.027022	0.01964
Debt (X ₁₅)	0.14	-		3	X ₄₂	4
	3	0.121	-0.022	X ₃₁		X ₁₀
	-			0.05351	0.042204	0.04125
Migration	0.24			6	X ₈₁	9
(X ₁₆)	5	0.075	-0.320	X ₃₁		X ₂₅
Mass media			0.020	0.05057	0.039217	0.03326
exposure	0.00	-	0.144	7	X ₉	7
	0	0.143	0.144	-	79	-
(X ₁₇)				X ₁₂		X ₃₁
Utilization						
of personal				0.03425	0.00000(0.02324
cosmopolite		0.239	-0.171	8	0.033206	6
sources of	8			X ₄₁	X ₁₃	X ₂₉
information				·		21
(X ₁₈)						

	Total	Total	Total	Substant	ial indirect	offoct
Variables	Effec	Direct	Indirec	Jubstant		
Valiables	t	Effect	t Effect	1	11	111
Utilization of personal	ι	LIICCI	t Liicet	0.08957	0.08886	0.08371
localite sources of	0.24			3	5	1
information (X ₁₉)	8	0.145	0.103	З Х ₉	X ₂₆	Т Х ₄₂
	0	0.145	0.105	0.03722	0.02908	0.01691
Contact with extension	0.16			X ₇	9	2
personal (X ₂₀)	9	0.187	-0.018	^ 7	Υ X ₃₁	Z X ₂
	7	0.167	-0.018	0.02574	0.02177	∧ ₂ 0.01604
Soud rate (V)	-			3	9	2
Seed rate% (X ₂₁)	0.10 0	-0.021	-0.079	-	,	—
	0	-0.021	-0.079	X ₁₇ 0.06127	X ₁₃ 0.04932	X ₂₉ 0.03369
Γ = $\pi t = \pi O(-t) (-t)$	0.05					
Fertilizer% (X ₂₂)	0.05	0 0 0 7	0 1 7 0	6	8	8
	8	0.237	-0.179	X ₉	X ₆	X ₄₂
	0.00			0.04254	0.03155	0.02104
Pesticide% (X ₂₃)	0.03	0.400	0.450	9	1	8
	9	0.189	-0.150	X ₆	X ₁₂	X ₂₈
Weed management%				0.09390	0.09073	0.02937
(X ₂₄)	0.21			8	2	6
(**24)	2	0.089	0.123	Х9	X ₄₂	X ₂₂
Water management%				0.22262		0.08232
(X ₂₅)	0.34			4	X9	8
(725)	3	-0.078	0.421	X ₂₆		X ₄₂
				0.06888		0.04553
Irrigation index% (X_{26})	0.38			8	7	6
	2	0.303	0.079	X ₄₂	X ₁₃	X9
				0.04220	0.02181	0.01760
Sowing time (X ₂₇)	0.02			4	9	1
	7	0.047	-0.020	X ₂₆	X ₄₂	X ₆
	-			0.03327	0.02690	0.02667
Varietal change (X ₂₈)	0.20			8	4	5
	4	-0.083	-0.121	X ₁₈	X ₂₉	X ₆
	-			0.04770	0.04313	0.03196
Farm power (X ₂₉)	0.00			7	6	8
	4	-0.107	0.103	X ₃₅	X ₃₁	Х9
Change in reinfall ratters				0.03748	0.03497	0.03072
Change in rainfall pattern	0.03			1	3	7
over last 20 year (X ₃₀)	5	0.023	0.011	X ₆	X ₂₂	X9
Change pattern in				0.03663	0.02279	0.01929
temperature(day/night)	0.10			1	7	9
over last 20 year (X_{31})	6	0.282	-0.176	X ₇	X ₉	X ₂₀
Change pattern in	-			0.02219	0.01937	0.01806
weather disaster over last	0.10			3	1	1
20 year (X_{32})	9	-0.047	-0.062	X ₁₇	Х ₁₈	Ч Х ₃₁
20 your (132)	/	0.047	0.002	111/	18	131

Change in seasonal	-			0.03103	0.02076	0.01970
pattern over last 20 year				1	6	8
(X ₃₃)	5	0.052	-0.107	X ₁₈	X ₁₅	X ₃₁
Change pattern in insect/	-			0.03452	0.02934	
pests & diseases over last				9	2	2
20 year (X ₃₄)	4	-0.147	0.073	X ₂₆	X ₃₅	X ₆
Change pattern in weed				0.03317	0.02484	0.01760
problem over last 20 year	0.04			5	8	5
(X ₃₅)	9	0.182	-0.133	X9	X ₇	X ₄₂

Residual effect: 0.62

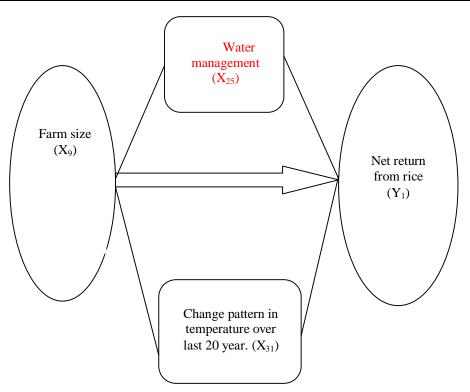

X₉ (Count of substantial indirect effect=18)

Table 6.19, it represents the path analysis to explain the direct, indirect and residual effect of exogenous variables on consequent variables i.e. net return from rice cultivation (Y_1) in the light of climate change.

Results reveals that the variable farm Size (X_9) exerts highest direct and water management % (X_{25}) exerts highest indirect effect on net return from rice cultivation over the other 35 exogenous variables in the light of climate change.

The variable, farm size (X_9) has been found to channelize the substantial indirect effect of, as many as, (18 times) to define its tremendous impact over the other exogenous variables to ultimately characterize the performance of consequent variable, Y_1 (net return from rice) in the light of climate change.

The residual effect is 62, it could be concluded that the combination of 35 variables in this investigation in the form of exogenous variables had been able to explain 38% of the variation in the consequent variable i.e. net return from rice cultivation in the light of climate change.

Model 1: Path analysis: Net return from rice (Y_1) and 35 exogenous variables. (Conventional method of rice)

```
Table 6.20: Path analysis: direct, indirect and residual effect: exogenous variables (X_1-X_{35}) vs. Expenditure on health care (Y_2).
```

Conventional method of rice

Variables		Total Direct	Total Indirect	Substa Indire		ct
	t	Effect	Effect	I	11	111
	-			0.050	0.033	0.024
Age (X ₁)	0.05			438	387	059
	0	-0.113	0.062	X ₇	X ₂₆	X ₃₂
	-			0.046	0.036	0.033
Education (X ₂)	0.09			729	643	05
	4	-0.052	-0.042	X ₁₆	X ₂₀	X ₁

	1	T	1	1	1	
Family				0.225	0.053	0.033
education status	0.29			309	403	286
(X ₃)	9	0.200	0.099	X ₇	X ₂₄	X ₁₁
Drimony				0.132	0.037	0.034
Primary	0.07			692	007	009
occupation (X ₄₁)	1	-0.226	0.298	X ₇	X ₁₈	X ₄₂
Coopdan				0.135	0.041	0.035
Secondary	0.01			11	792	335
occupation (X ₄₂)	3	-0.057	0.070	X ₄₁	X ₂₄	X ₂₅
	-			0.021	0.018	0.016
Caste (X ₅)	0.07			377	459	897
	6	-0.025	-0.051	X ₆	X ₂₈	X ₄₁
	-			0.104	0.033	0.026
Family type (X_6)	0.48			477	4	308
5 51 (6)	5	0.147	-0.632	X ₈₁	X ₄₁	X ₂₀
	-			0.130	0.116	0.040
Family size (X ₇)	0.54			303	843	22
5 (7)	4	-0.747	0.203	X ₆	X ₈₁	X ₄₁
				0.276	0.061	0.042
Family income	0.04			02	523	808
primary (X ₈₁)	5	-0.316	0.361	X ₇	X ₉	X ₃
				0.109	0.048	0.048
Family income	0.02			096	747	279
secondary (X ₈₂)	7	0.012	0.016	X ₇	X ₃	X ₄₁
	-			0.046	0.036	0.030
Farm size (X ₉)	0.04			24	929	858
	7	0.133	-0.179	X ₁₃	X ₁₁	X ₁₉
Social	-			0.037	0.023	0.017
participation	0.11			68	261	6
(X ₁₀)	6	0.025	-0.141	X9	X ₁₆	X ₂₀
	-	0.010		0.025	0.018	0.013
Risk orientation	0.16			601	842	21
(X ₁₁)	2	0.260	-0.098	X ₃	X ₉	X ₁₆
Index of farm	-	0.200	0.070	0.056	0.025	0.020
mechanization	0.10			531	837	734
(X ₁₂)	0.10	-0.092	-0.008	X ₉	X ₃	X ₁₃
<u>(12)</u>	0	0.072	0.000	N 9	A 3	N 13

	-			0.057	0.047	0.024
Cropping intensity (X ₁₃)	0.11			079	104	885
intensity (Λ_{13})	1	-0.092	-0.019	X ₈₁	X ₄₁	X ₃₁
	-			0.023	0.023	0.017
Selling% (X ₁₄)	0.05			949	904	594
	5	0.006	-0.061	X ₉	X ₁₃	X ₁₆
				0.114	0.028	0.015
Debt (X ₁₅)	0.09			885	616	621
	9	0.091	0.008	X ₇	X ₂₆	X ₂₅
				0.116	0.078	0.064
Migration (X ₁₆)	0.10			43	062	469
	3	-0.095	0.198	X ₈₁	X ₂₅	X ₂₆
Mass media	-			0.021	0.013	0.013
exposure (X ₁₇)	0.06			059	512	179
	8	0.097	-0.165	X ₁₂	X ₉	X 1

	Total I Dire		Total Indire	Substar Effect	ntial	Indirect
Variables	Effe ct	ct Effec t		1	11	111
Utilization of				0.0635	0.0145	0.0117
personal	-	-		71	34	91
cosmopolite	0.15	0.13	-0.021	X ₄₁	X ₁	X ₈₁
sources of	3	2				
information (X ₁₈)						
Utilization of				0.0308	0.0211	0.0189
personal localite	0.06	0.13	-0.072	63	9	43
sources of	1	2	-0.072	X9	X ₃₁	X ₃₀
information (X ₁₉)						
Contact with	0.00	0.00		0.0376	0.0193	0.0148
extension	0.02	0.20	-0.180	91	55	81
personal (X ₂₀)	0	0		X ₈₁	X ₆	X ₂₈
-	0.00	0.01		0.0244	0.0221	0.0208
Seed rate%		0.01	0.014	89	82	59
(X ₂₁)	9	5		X ₃	X ₄₁	X ₂₄

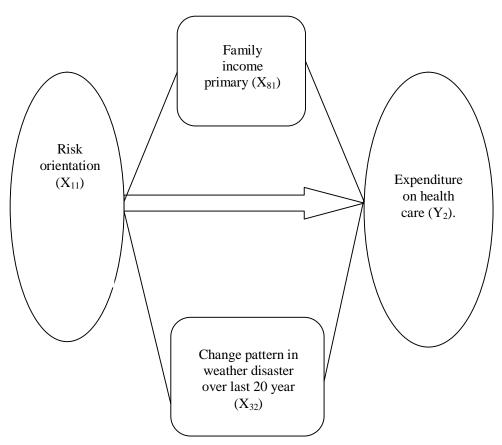
Results and Discussion

	1	1	•			
	0.12	-		0.1626	0.0319	0.0253
Fertilizer% (X ₂₂)	1	0.02	0.141	45	03	23
	1	0		X ₇	X ₁₈	X ₁₃
	0.10	-		0.1761	0.0283	0.0241
Pesticide% (X ₂₃)	0.12	0.02	0.153	68	76	73
,	8	5		X ₇	X ₂₈	X ₂₆
Weed	-	-		0.0323	0.0256	0.0241
management%(0.13	0.15	0.019	57	87	9
X ₂₄)	9	9		X ₉	X ₁₁	X ₆
Water	-	-		0.0538	0.0504	0.0483
management%	0.15	0.14	-0.010	31	12	38
(X ₂₅)	8	8		X ₁₁	X ₁₆	X ₁₉
	-	-		0.0741	0.0412	0.0388
Irrigation	0.15	0.14	-0.009	51	22	76
index%(X ₂₆)	8	9		X ₁₁	X ₁₆	X ₁₉
	-	-		0.0413	0.0309	0.0296
Sowing time	0.01	0.10	0.090	78	X ₁₁	06
(X ₂₇)	3	3		X ₇		X ₃₂
	_	-		0.0479	0.0379	0.0246
Varietal change	0.07	0.11	0.036	77	16	95
(X ₂₈)	6	2		X ₇	X ₃₀	X ₂₅
		_		0.0935	0.0285	0.0281
Farm power		0.00	0.140	53	86	37
(X ₂₉)	2	8		X ₇	X ₁₈	X ₂₈
Change in		0		0.0742	0.0166	0.0153
rainfall pattern	0.06	0.15		39	82	78
over last 20 year		0.10	-0.091	X ₇	Χ ₁₉	X ₂₆
(X ₃₀)	Ŭ	Ŭ		~	N 19	N20
Change pattern				0.0306	0.0206	0.0182
in temperature	-	-		0.0300	34	31
(day/night) over	0.13	0.12	-0.008	X ₆	X ₂₀	X ₂₇
last 20 year(X ₃₁)	5	7		∧ ₆	A20	<u>^2</u> /
Change pattern				0.0197	0.0187	0.0174
in weather				82	62	0.0174 98
disaster over	0.04	0.14	-0.099	82 X ₂₈	02 X ₇	98 X ₁₁
	5	3	-0.099	A28	^ 7	^ 11
(X ₃₂)						

Change in seasonal pattern over last 20 year (X ₃₃)	- 0.01 5	0.05 5	-0.070	0.0278 95 X ₃₂	0.0188 55 X ₂₄	0.0105 3 X ₂₇
Change pattern in insect/ pests & diseases over last 20 year (X ₃₄)	0.02	- 0.08 5	0.108	0.0687 42 X ₇	0.0291 4 X ₁	0.0264 97 X ₃
Change pattern in weed problem over last 20 year (X ₃₅)	-	0.07 0	-0.157	0.0248 79 X ₆	0.0196 21 X1 ₆	0.0157 13 X ₁

Residual effect: 0.67

X₇ (Count of substantial indirect effect=14)


Table 6.20, It represents the path analysis to explain the direct, indirect and residual effect of exogenous variables on consequent variables i.e. expenditure on health care (Y_2) in the light of climate change.

Results reveals that the variable risk orientation (X_{11}) exerts highest direct and family income primary (X_{81}) exerts highest indirect effect on expenditure on health care (Y_2) over the other 35 exogenous variables in the light of climate change.

The variable, family size (X_7) has been found to channelize the substantial indirect effect of, as many as, (14 times) to define its tremendous impact over the other exogenous variables to ultimately characterize the performance of consequent variable, expenditure on health care (Y_2) in the light of climate change.

The residual effect is 67, it could be concluded that the combination of 35 variables in this investigation in the form of

exogenous variables had been able to explain 33% of the variation in the consequent variable i.e. expenditure on health care (Y2) in the light of climate change.

Model 2: Path analysis: Expenditure on health care (Y₂) and 35 exogenous variables. (Conventional method of rice)

Table 6.21: Path analysis: direct, indirect and residual effect: exogenous variables (X_1-X_{35}) vs. Net return from rice (Y_1) .

SRI method

		Total		Substa	antial Inc	lirect
	Total	Direc	Total		Effect	
Variables	Effec	t	Indirec			
	t	Effec	t Effect	I	11	111
		t				
				0.01389	0.00988	0.0080
Age (X ₁)	-	-		8	6	93
	0.277	0.079	-0.198	X ₇	X1 ₇	X ₈₂
Education				0.08425	0.03355	0.0223
(X_2)				3	3	26
	0.173	0.076	0.097	X ₉	X ₈₁	X ₁₆
Family				0.03473	0.02956	0.0270
education		-		7	3	42
status (X ₃)	0.086	0.012	0.098	X ₉	X ₈₁	X ₇
Primary				0.30180	0.02197	0.0188
occupation		-		2	1	3
(X ₄₁)	0.331	0.033	0.364	X ₉	X ₂	X ₈₁
Secondary				0.01623	0.01311	0.0107
occupation	-			3	1	67
(X ₄₂)	0.267	0.000	-0.266	X ₄₁	X ₂	X ₃₁
				0.07588	0.01732	0.0159
Caste (X ₅)				9	5	55
	0.126	0.049	0.078	X ₉	X ₁₅	X ₃₃
Family type				0.06503	0.01691	0.0124
(X ₆)	-			2	X ₁	35
(0)	0.052	0.003	-0.055	X ₉		X ₂₈
Family size				0.07301	0.01661	0.0131
(X ₇)	-	-	0.004	1	4	09
,	0.032	0.066	0.034	X ₉	X ₁	X ₂₈
Family				0.24889	0.02449	0.0174
income	0 417	0 1 4 (0.071	9	8	67 X
primary (X ₈₁)	0.417	0.146	0.271	X9	X ₇	X ₂
Family				0.06317	0.02470	0.0215
income				6	9	41 X
secondary	0 07 4	-	0 1 5 1	X ₈₁	X ₉	X ₂
(X ₈₂)	0.074	0.077	0.151			

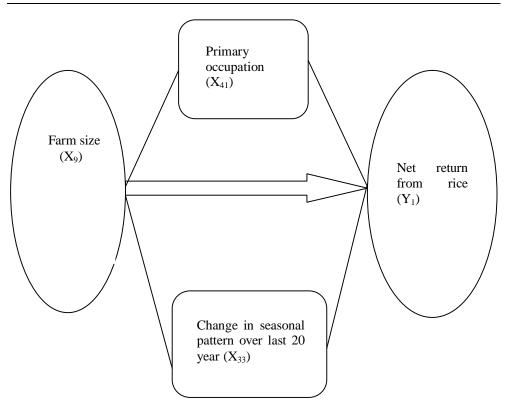
			1			
Farm size				0.04571	0.02054	0.0173
(X ₉)				7	3	86
	0.890	0.794	0.096	X ₈₁	X ₁	X ₁₆
Social				0.03365	0.02721	0.0205
participation		-		9	9	63
(X ₁₀)	0.034	0.010	0.043	X ₉	X ₂	X ₈₁
Risk				0.07103	0.01397	0.0116
orientation				6	6	45
(X ₁₁)	0.148	0.053	0.095	X ₉	X ₁₅	X ₃₄
Index of				0.02372	0.01975	0.0134
farm				1	5	75
mechanizatio	-	-		X ₁₁	X ₃₁	X ₃₄
n (X ₁₂)	0.020	0.037	0.017			
Cropping				0.01934	0.01460	0.0098
intensity	-	-		5	4	72
(X ₁₃)	0.277	0.058	-0.218	X ₂₈	X ₈₂	X ₂₅
Solling ⁰				0.01876	0.01022	0.0086
Selling%	-	-		8	2	45
(X ₁₄)	0.122	0.053	-0.068	X ₈₁	X ₃₁	X ₂₈
				0.01632	0.00930	0.0093
Debt (X ₁₅)	-	-		X ₈₂	3	01
	0.176	0.083	-0.093		X ₂₃	X ₃₅
Migration				0.01327	0.01046	0.0072
Migration	-	-		4	1	91
(X ₁₆)	0.365	0.071	-0.293	X ₁₇	X ₁₉	X ₂₃
Mass media				0.15730	0.04600	0.0310
exposure		-		7	6	06
(X ₁₇)	0.188	0.070	0.258	X9	X ₂	X ₈₁

		Tota		Substa	ntial I	ndirect
	Tota	I	Total	Effect		_
Variables	l Effe ct	Dire ct Effe ct	Indire ct Effect	1	11	111
Utilization of				0.0164	0.0150	0.0130
personal				2	92	99
cosmopolite		-		X ₉	X ₃₃	X ₈₂
sources of	0.00	0.03				
information (X ₁₈)	3	3	0.036			
Utilization of				0.0124	0.0110	0.0083
personal localite	-	-		72	99	34
sources of	0.18	0.08		X ₂₆	X ₅	X ₁₆
information (X ₁₉)	3	9	-0.093			
Contact with				0.0836	0.0182	0.0181
extension personal	0.10	0.00		65	05	55
(X ₂₀)	1	8	0.093	X ₉	X ₁₄	X ₁
Seed rate% (X ₂₁)	0.05	0.02		0.0216 58	0.0148 93	0.0126 99
	5	5	0.030	X ₁₅	X ₉	X ₁
	-			0.0087	0.0079	0.0066
Fertilizer% (X ₂₂)	0.03	0.05		26	71	67
	0	8	-0.088	X ₂₄	X ₂₈	X ₂₉
	-	-		0.0126	0.0100	0.0067
Pesticide% (X ₂₃)	0.09	0.07		96	44	15
	7	7	-0.020	X ₂₈	X ₁₅	X ₁₆
Weed				0.0137	0.0116	0.0098
management%	0.10	0.06		77	66	34
(X ₂₄)	5	7	0.038	X ₁₆	X ₂	X ₂₆
Water	-			0.0181	0.0167	0.0089
management%	0.10	0.05		49	86	72
(X ₂₅)	2	9	-0.161	X ₂₃	X ₃₄	X ₈₂
Irrigation index%				0.0355	0.0309	0.0170
Irrigation index% (X ₂₆)	0.01	0.07		92	76	52
(^26)	7	4	-0.057	X ₁₆	X ₈₁	X ₂

	1	-		1		
				0.0825	0.0171	0.0101
Sowing time (X ₂₇)	0.08	0.03		95	87	26
	7	1	0.056	X ₉	X ₈₁	X ₁₃
Varietal change	-			0.0071	0.0065	0.0045
(X_{28})	0.16	0.06		07	69	03
(128)	0	5	-0.225	X ₂₂	X ₁₁	X ₈₂
	-	-		0.0149	0.0145	0.0110
Farm power (X ₂₉)	0.11	0.03		44	92	66
	5	0	-0.085	X ₃₁	X ₂₆	X ₁
Change in rainfall	-	-		0.0222	0.0166	0.0150
pattern over last	0.18	0.01		38	57	59
20 year (X ₃₀)	2	9	-0.164	X ₂₈	X ₁₉	X ₃₄
Change pattern in				0.0079	0.0052	0.0051
temperature(day/n				2	01	88
ight) over last 20	0.06	0.11		X ₇	X ₂₄	X ₄₁
year (X ₃₁)	9	3	-0.044			
Change pattern in				0.1093	0.0168	0.0122
weather disaster		-		1	46	2
over last 20 year	0.12	0.00		X9	X ₃₄	X ₁₅
(X ₃₂)	4	7	0.131			
Change in				0.0141	0.0118	0.0081
seasonal pattern	-	-		01	94	79
over last 20 year	0.15	0.06		X ₈₁	X ₃₁	X ₁₈
(X ₃₃)	6	1	-0.095			
Change pattern in				0.0237	0.0099	0.0087
insect/ pests &		-		5	11	96
diseases over last	0.03	0.07		X9	X ₅	X ₈₂
20 year (X ₃₄)	7	5	0.038			
Change pattern in	-			0.0077	0.0066	0.0058
weed problem over		0.03		X ₂₂	64	49
last 20 year (X ₃₅)	3	9	-0.091		X ₁	X ₇

Residual effect: 0.32

X₉ (Count of substantial indirect effect=17)


Table 6.21, It represents the path analysis to explain the direct, indirect and residual effect of exogenous variables on

consequent variables i.e. net return from rice cultivation (Y_1) in the light of climate change.

Results reveals that the variable farm size(X_9) exerts highest direct and primary occupation (X_{41}) exerts highest indirect effect on net return from rice cultivation over the other 35 exogenous variables in the light of climate change.

The variable, farm size (X_9) has been found to channelize the substantial indirect effect of, as many as, (17 times) to define its tremendous impact over the other exogenous variables to ultimately characterize the performance of consequent variable, Y_1 (net return from rice) in the light of climate change.

The residual effect is 32, it could be concluded that the combination of 35 variables in this investigation in the form of exogenous variables had been able to explain 68% of the variation in the consequent variable i.e. net return from rice cultivation in the light of climate change.

Model 3: Path analysis: Net return from rice (Y₁) and 35 exogenous variables.

(SRI method)

```
Table 6.22: Path analysis: direct, indirect and residual effect: exogenous variables (X_1-X_{35}) vs. Expenditure on health care (Y_2).
```

SRI method

	Total			Substantial Effect		Indirect
Variables	Effec t			I	11	111
Age (X ₁)	0.258	0.142		0.05297 2 X ₆	0.05062 5 X ₉	0.02718 6 X ₂₁

Education (X_2) -XX1768(X_2)0.0340.0470.082X3X13Family0.0340.0470.082733Family0.2990.2170.082X6X13X81Primary0.039680.037470.02919occupationX1783 (X_{41}) 0.1650.091-0.074X13X3Secondary0.2630.1460.117X9X41X6occupation0.030440.018510.01849caste (X5)0.024330.024230.02493Caste (X5)0.024330.024230.02309family type (X_6) 0.024330.024230.02309family size (X_7) 0.024330.024230.02309family size (X_9) 0.024340.023000.01561family0.024330.024000.01561family0.02444X28X17Family0.025440.023000.01561family0.025440.023000.01561family611primary (X81)0.2500.1320.119X6X13X3Family874family<			[0.00501
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Education				0.09469		0.03531
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		X ₁₇		
education status (X_3) 0.2990.2170.082 X_6 X_{13} X_{81} Primary occupation (X_{41}) 0.1650.091-0.074 X_{17} 83Secondary occupation (X_{42}) 0.1650.091-0.074 X_{13} X_3 Secondary occupation (X_{42}) 0.2630.1460.117 X_9 X_{41} X_6 Caste (X_5) 1860.1400.085-0.054 X_{15} X_{10} X_{13} Family (X_6) 657 (X_6) 657 (X_6) 861 (X_6) 657 (X_6) 861 (X_7) 0.4840.247-0.237 X_{30} X_{28} X_{17} Family income secondary (X_{81}) 0.2500.1320.119 X_6 1 X_{13} Family income (X_{9}) 0.2500.1320.119 X_6 X_{13} X_3 Farm (X_{82}) 0.1250.0520.1776Farm (X_{9}) 0.1250.070 X_{30} X_{13} X_{81} Social participation (X_{10}) 0.0220.1030.126 X_3 X_{21} X_{42} Risk orientation0.0220.1030.126	· -/	0.034	0.047	0.082			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	status (X ₃)	0.299	0.217	0.082	X ₆	X ₁₃	X ₈₁
$\begin{array}{c cccc} (\chi_{41}) & 0.165 & 0.091 & -0.074 & & \chi_{13} & \chi_{3} \\ \hline Secondary \\ occupation \\ (\chi_{42}) & 0.263 & 0.146 & 0.117 & \chi_{9} & \chi_{41} & \chi_{6} \\ \hline \\ Caste (\chi_{5}) & - & - & & 0.03304 \\ Caste (\chi_{5}) & - & - & & 0.02433 \\ \hline \\ Family type \\ (\chi_{6}) & & 0.484 & 0.247 & -0.237 & \chi_{30} & \chi_{28} & \chi_{17} \\ \hline \\ Family size \\ (\chi_{7}) & size \\ (\chi_{7}) & size \\ (\chi_{7}) & 0.250 & 0.132 & 0.119 & \chi_{6} & \chi_{13} & \chi_{3} \\ \hline \\ Family type \\ (\chi_{6}) & 0.250 & 0.132 & 0.119 & \chi_{6} & \chi_{13} & \chi_{3} \\ \hline \\ Family type \\ (\chi_{6}) & 0.125 & 0.052 & 0.177 & 0.05127 & 0.03807 \\ \hline \\ Family type \\ (\chi_{9}) & 0.125 & 0.052 & 0.177 & 0.06192 & 0.05622 & 0.04126 \\ \hline \\ Farm size \\ (\chi_{9}) & 0.125 & 0.052 & 0.177 & 0.06192 & 0.05622 & 0.04126 \\ \hline \\ Farm size \\ (\chi_{9}) & 0.125 & 0.052 & 0.177 & 0.06192 & 0.03056 & 0.04264 \\ \hline \\ Farm size \\ (\chi_{9}) & 0.125 & 0.195 & 0.070 & \chi_{30} & \chi_{13} & \chi_{81} \\ \hline \\ Social \\ participation \\ (\chi_{10}) & 0.022 & 0.103 & 0.126 & \chi_{3} & \chi_{21} & \chi_{42} \\ \hline \\ Risk \\ orientation & - & & & & & & & & & & & & & & & & & $	Primary				0.03968	0.03747	0.02919
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	occupation	-	-		X ₁₇	8	3
$\begin{array}{c ccccc} Secondary \\ occupation \\ (X_{42}) & 0.263 \\ 0.146 \\ 0.117 \\ Caste (X_5) \\ - \\ Caste (X_5) \\ - \\ 0.140 \\ 0.085 \\ - \\ 0.140 \\ 0.085 \\ - \\ 0.484 \\ 0.247 \\ - \\ 0.484 \\ 0.247 \\ - \\ 0.267 \\ - \\ 0.484 \\ 0.247 \\ - \\ 0.277 \\ - \\ 0.484 \\ 0.247 \\ - \\ 0.277 \\ - \\ 0.237 \\ - \\ 0.237 \\ - \\ 0.237 \\ - \\ 0.237 \\ - \\ 0.237 \\ - \\ 0.237 \\ - \\ 0.288 \\ - \\ 0.02433 \\ 0.02423 \\ 0.02423 \\ 0.02423 \\ 0.02423 \\ 0.02423 \\ 0.02423 \\ 0.02309 \\ 6 \\ 5 \\ 7 \\ 7 \\ X_{30} \\ X_{28} \\ X_{10} \\ X_{28} \\ X_{30} \\ X_{17} \\ - \\ 0.02554 \\ 0.02300 \\ 0.01561 \\ 8 \\ 6 \\ 1 \\ X_{28} \\ X_{30} \\ X_{17} \\ - \\ 0.02554 \\ 0.02300 \\ 0.0250 \\ 0.01561 \\ 8 \\ 6 \\ 1 \\ X_{28} \\ X_{30} \\ X_{17} \\ - \\ 0.0508 \\ 0.00586 \\ 0.01561 \\ 8 \\ - \\ 0.0508 \\ 0.05702 \\ 0.05702 \\ 0.05127 \\ 0.05086 \\ 0.00807 \\ 2 \\ 1 \\ 6 \\ X_{30} \\ X_{13} \\ X_{31} \\ X_{42} \\ X_{13} \\ X_{14} \\ X_{12} \\ X_{13} \\ X_{14} \\ X_{14} \\ X_{14} \\ X_{14} \\ X_{14} \\ X_$	(X ₄₁)	0.165	0.091	-0.074		X ₁₃	X ₃
occupation (X_{42}) 0.2630.1460.117 X_9 X_{41} X_6 Caste (X_5) - 0.140- 0.085- 0.0540.033040.018510.01849Family (X_6) - 0.484- 0.247- 0.02470.024330.024230.02399Family (X_6) - 0.484- 0.247- 0.2370.025540.023000.01561Family (X_7) - 0.492- 0.047- -0.4440.078910.023000.01561Family income primary (X_{81}) 0.2500.1320.119X_6X_{13}X_3Family income secondary (X_{82}) 0.1250.0520.1770.057020.051270.03807Farm (X_9) 0.1250.0520.177- X_{30} X_{13}X_81Social participation (X_{10}) 0.0220.1030.126X_3X_{21}X_{42}Risk orientation- $-$ - $-$ 0.026650.016130.01574	Secondary				0.06898	0.04537	0.03068
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	occupation				4	8	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.263	0.146	0.117	X9	X ₄₁	X ₆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.03304	0.01851	0.01849
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Caste (X ₅)	-	-		1	8	6
Family type (X_6) type 0.484 0.02470.024330.024230.02399Family size (X_7) 0.484 0.247 -0.237 X_{30} X_{28} X_{17} Family size (X_7) $ 0.02554$ 0.02300 0.01561 Family income 0.492 0.047 -0.444 X_{28} X_{30} X_{17} Family income 0.250 0.132 0.119 X_6 X_{13} X_3 Family income 0.250 0.132 0.119 X_6 X_{13} X_3 Family income 0.250 0.132 0.119 X_6 X_{13} X_3 Family income 0.250 0.132 0.119 X_6 X_{13} X_{33} Family income 0.250 0.125 0.052 0.0702 0.05127 0.03807 Farm size (X_9) $ X_{81}$ X_{42} X_{13} Farm size (X_{10}) $ 0.05539$ 0.03056 0.02864 Social participation (X_{10}) 0.022 0.103 0.126 X_3 X_{21} X_{42} Risk orientation $ 4$ 5 3 X_{17}		0.140	0.085	-0.054	X ₁₅	X ₁₀	X ₁₃
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.02433	0.02423	0.02399
Family (X_7)size 0.492- 0.492- 0.047- -0.444 X_{30} X_{28} X_{17} Family income- 0.492- 0.047-0.444 X_{28} X_{30} X_{17} Family income- 2- 510.050860.04400primary (X_{81})0.2500.1320.119 X_6 X_{13} X_3 Family income- 20.057020.051270.03807family income- 21 66secondary (X_{82})- 0.1250.0520.177-Farm (X_9)- 0.1250.0520.177- 4- 4Social participation (X_{10})- 0.0220.01030.126 X_3 X_{21} Risk orientation 46 X_{28}	5 51	-	-		6	5	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(X ₆)	0.484	0.247	-0.237	X ₃₀	X ₂₈	X ₁₇
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.02554	0.02300	0.01561
Family income primary (X_{81})0.2500.1320.119 X_{28} X_{30} X_{17} Family income secondary0.2500.1320.119 X_6 X_{13} X_3 Family income secondary-0.057020.051270.03807 (X_{82}) 0.1250.0520.177-6Farm (X_9) X_{81} X_{42} X_{13} Farm (X_9)0.1250.0520.177Farm (X_9)0.0661920.056220.04126Social participation (X_{10})0.025390.030560.02864Risk orientation4533K Orientation46 X_{28}	3	-	-		8	6	1
Family income0.02500.1320.1190.050860.04400primary (X_{81}) 0.2500.1320.119 X_6 X_{13} X_3 Family income0.057020.051270.03807jncome-216secondary (X_{82}) X_{81} X_{42} Farm (X_9) 0.1250.0520.177Farm (X_9) 0.1250.0520.1770.056220.04126Social participation0.055390.030560.02864fisk orientation453Ksk orientation0.026650.016130.01574	(X ₇)	0.492	0.047	-0.444	X ₂₈	X ₃₀	X ₁₇
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Family				0.07891	0.05086	0.04400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	income				2	5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	primary (X ₈₁)	0.250	0.132	0.119	X ₆	X ₁₃	X_3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Family				0.05702	0.05127	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	income				2	1	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	secondary		-		X ₈₁	X ₄₂	X ₁₃
Farm (X_9) size 0.125 - 0.125 0.06192 0.070 0.05622 X_{30} 0.04126 X_{13} Social participation (X_{10}) - 0.022 0.070 X_{30} X_{13} X_{81} Social participation (X_{10}) - 0.022 0.070 X_{30} X_{13} X_{81} Social participation (X_{10}) - 0.022 0.070 X_{30} X_{13} X_{81} Social participation (X_{10}) - 0.022 0.1030.015539 0.126 0.03056 X_3 0.02864 X_{21} Risk orientation $-$ - 4 0.02665 6 0.01613 X_{28}	-	0.125	0.052	0.177			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.06192	0.05622	0.04126
Social participation-0.1250.1950.070 X_{30} X_{13} X_{81} Social participation-0.055390.030560.02864 (X_{10}) 0.0220.1030.126 X_3 X_{21} X_{42} Risk orientation-0.026650.016130.01574		-	-		8	7	4
Social participation-0.055390.030560.02864 (X_{10}) 0.0220.1030.126X3X21X42Risk orientation-0.026650.016130.01574	(X ₉)	0.125	0.195	0.070	X ₃₀	X ₁₃	X ₈₁
$\begin{array}{c ccccc} \text{participation} & - & 4 & 5 & 3 \\ (X_{10}) & 0.022 & 0.103 & 0.126 & X_3 & X_{21} & X_{42} \\ \hline \text{Risk} & & 0.02665 & 0.01613 & 0.01574 \\ \text{orientation} & - & 4 & 6 & X_{28} \\ \end{array}$	Social					0.03056	
(X ₁₀) 0.022 0.103 0.126 X ₃ X ₂₁ X ₄₂ Risk 0.02665 0.01613 0.01574 orientation - 4 6 X ₂₈			_				
Risk orientation 0.02665 0.01613 0.01574 4 6 X ₂₈		0.022	0.103	0.126			
orientation - 4 6 X ₂₈							
		-					
	(X ₁₁)	0.010	0.140	-0.150	X ₁₅	X ₁₂	- 20

			n	1	n	
Index of				0.06277	0.01302	0.01285
farm				X ₁₁	7	1
mechanizatio					X ₃₁	X ₁₅
n (X ₁₂)	0.003	0.036	-0.033			
Cropping				0.05450	0.03770	0.02556
intensity	-	-		4	3	1
(X ₁₃)	0.218	0.201	-0.017	X ₉	X ₂₈	X ₁₁
Solling0/				0.02750	0.02327	0.01907
Selling%		-		6	X ₉	4
(X ₁₄)	0.061	0.101	0.162	X ₂₅		X ₁₃
				0.04395	0.02787	0.02168
Debt (X ₁₅)	-	-		1	1	X ₂₅
	0.044	0.159	0.115	X ₂₁	X ₃₀	
Migration				0.04760	0.03426	0.01739
Migration				9	X ₂₆	8
(X ₁₆)	0.055	0.003	0.052	X ₉		X ₁₀
Mass media				0.02798	0.02331	0.02165
exposure				6	7	4
(X ₁₇)	0.087	0.156	-0.069	X ₈₁	X ₃₀	X ₁₃

			Total		Substanti	al Indirect	Effect
Variables			Direc t Effec t	Total Indirec t Effect	1	11	111
Utilization of	сf				0.02293	0.01411	0.00976
personal					8	5	5
cosmopolite					X ₁₅	X ₂₈	X ₁₁
sources d	of	-	-				
information		0.06	0.03				
(X ₁₈)		7	7	-0.030			
Utilization of	of				0.04677	0.02744	0.01760
personal					8	9	5
localite					X ₃₀	X9	X ₄₂
sources d	of	-	-				
information		0.14	0.06				
(X ₁₉)		0	9	-0.071			

	1	1		T	T	1 1
Contact with		-		0.03446		0.01539
extension	0.10	0.03		6	8	5
personal (X ₂₀)	5	2	-0.073	X ₁₄	X ₃	X ₈₁
Seed rate%	-	-		0.04130	0.02155	0.02097
	0.15	0.16		4	8	1
(X ₂₁)	5	9	0.015	X ₁₅	X ₁₁	X ₃₀
	-	-		0.01553	0.01261	0.01104
Fertilizer%	0.07	0.00		5	7	6
(X ₂₂)	4	5	-0.068	X ₂₈	X ₁	X ₂₆
	-	-		0.04955	0.02474	0.01915
Pesticide%	0.05	0.08		9	4	5
(X ₂₃)	2	2	0.030	X ₂₅	X ₂₈	X ₁₅
Weed	-	-	0.000	0.02830	0.01594	0.01363
management	0.07	0.08		6	1	X ₂₅
% (X ₂₄)	1	3	0.012	X ₃	Х ₁₁	N 25
Water	1	5	0.012	0.03486	0.01931	0.01634
	- 0.22	- 0.21		7	7	8
	0.22	1	-0.016	7 X ₉	-	
% (X ₂₅)	/	1	-0.010	<u>^9</u> 0.02915	X ₂₃ 0.02795	X ₁₅ 0.02635
Irrigation	0.00	-				
index% (X ₂₆)	0.03	0.06	0.105	5	9	7
	7	8	0.105	X_3	X ₈₁	X ₆
Sowing time		-		0.05216	0.04304	0.03479
(X ₂₇)	0.06	0.01		1	1	7
(**27)	0	6	0.077	X ₃₀	X ₂₅	X ₁₃
Varietal	-			0.02623	0.01886	0.01738
change (X ₂₈)	0.07	0.12		2	2	2
	0	7	-0.198	X ₉	X ₁₇	X ₁₁
Form nowor	-			0.02527	0.01391	0.01267
Farm power	0.04	0.07		2	4	4
(X ₂₉)	1	4	-0.115	X ₉	X ₂₁	X ₃₅
Change in				0.04811	0.04334	0.02993
rainfall				2	2	8
pattern over	_	_		 X ₉	– X ₂₈	X ₁₁
		0.25		/	20	, ,
(X ₃₀)	1	1	0.189			
(** 307		· ·	0.107			

[
Change				0.04952	0.02104	0.02101
pattern in				X ₂₅	9	5
temperature					X ₆	X ₃₀
(day/night)						
	0.21	0.07				
year (X ₃₁)	8	4	0.143			
Change				0.03074	0.02900	0.02330
pattern in				1	1	4
weather				X ₁₃	X ₃₀	X ₁₅
disaster over	-	-				
last 20 year	0.12	0.06				
(X ₃₂)	2	8	-0.054			
Change in				0.02514	0.02436	0.02228
seasonal				5	3	2
pattern over				X9	X ₁₇	X ₅
last 20 year	0.12	0.04				
(X ₃₃)	5	6	0.078			
Change				0.05039	0.04725	0.02259
pattern in				5	1	3
insect/ pests				X ₃₀	X ₂₅	X ₃
& diseases		-				
over last 20	0.10	0.01				
year (X ₃₄)	6	8	0.124			
Change				0.03512	0.02028	0.01724
pattern in				8	2	5
weed problem				X ₂₅	X ₃₀	X ₁₀
over last 20	0.09	0.06				
year (X ₃₅)	4	5	0.029			

Residual effect: 0.67

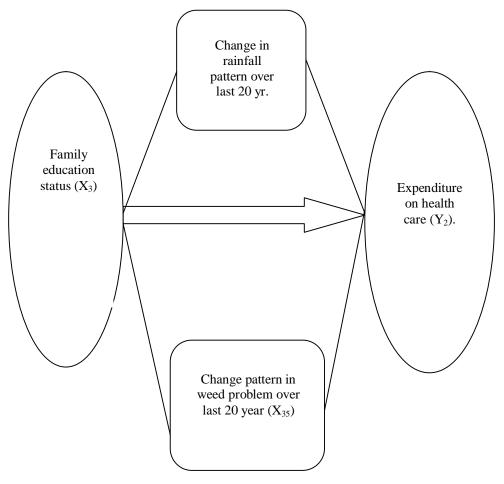

X₃₀ (Count of substantial indirect effect=12)

Table 6.22, it represents the path analysis to explain the direct, indirect and residual effect of exogenous variables on consequent variables i.e. expenditure on health care (Y_2) in the light of climate change.

Result reveals that the variable family education status (X_3) exerts highest direct and change in rainfall pattern over last 20 year (X_{30}) exerts highest indirect effect on expenditure on health care (Y_2) over the other 35 exogenous variables in the light of climate change.

The variable, change in rainfall pattern over last 20 year (X_{30}) has been found to channelize the substantial indirect effect of, as many as, (12 times) to define its tremendous impact over the other exogenous variables to ultimately characterize the performance of consequent variable, expenditure on health care (Y_2) in the light of climate change.

The residual effect is 67, it could be concluded that the combination of 35 variables in this investigation in the form of exogenous variables had been able to explain 33% of the variation in the consequent variable i.e. expenditure on health care (Y_2) in the light of climate change.

Model 4: Path analysis: Expenditure on health care (Y₂) and 35 exogenous variables. (SRI method)

Table 6.23: Factor analysis: Indicator of impact on sustainable livelihood generation through rice production management in the light of climate change. (Conventional method of rice)

Facto r	Variabl es	Factor Ioadin g	% of varian ce	Cumulati ve %	Factor renaming
	X ₂ X ₉	0.591 0.672			
Facto r 1	X ₁₁ X ₁₄ X ₂₅	0.198 0.332 0.673	9.996	9.996	Farm capability
	X ₂₅ X ₂₆	0.546			
Facto r 2	X ₃ X ₄₁ X ₈₁ X ₂₂ X ₂₃	0.32 0.402 0.474 0.41 0.234	8.266	18.262	Input support
Facto r 3	X ₁ X ₆ X ₇ X ₁₆ X ₂₄	0.489 0.279 0.297 0.381 0.433	7.114	25.376	Family composition
Facto r 4	X ₄₂ X ₈₂ X ₁₀	0.374 0.448 0.471	5.903	31.278	Social status
Facto r 5	X ₂₉ X ₃₅	0.513 0.545	5.32	36.598	Weed management
Facto r 6	X ₁₂ X ₁₈ X ₂₈	0.506 0.347 0.4	4.787	41.385	Resource support
Facto r 7	X ₁₉ X ₃₂ X ₃₃	0.42 0.387 0.401	4.095	45.48	Weather disaster & seasonal pattern
Facto r 8	X ₂₀ X ₂₁	0.413 0.443	4.075	49.555	Extension contact

Facto r 9	X ₃₀	0.42	3.541	56.834	Rainfall pattern
Facto r 10	X ₂₇ X ₃₄	0.337 0.569	3.446	60.28	Change pattern in insect/pests/dise ases
Facto r 11	X ₁₇	0.338	3.126	63.406	Exposure
Facto r 12	X ₅ X ₁₃	0.353 0.238	2.994	66.4	Cropping intensity
Facto r 13	X ₁₅ X ₃₁	0.339 0.381	2.874	69.274	Change in temperature

Conventional method of rice: Factor analysis for clubbing of variables into factor based on factor loading.

Factor 1

The factor 1 is renaming as **Farm capability**. It accounted for 9.996 percent of the total data variance with 9.996 cumulative percent. Six variables having high factor loading were chosen to interpret this factor. The factor loadings were all positive. The variables and factor loading were:

	Variability	Factor loading
X ₂₅	Water management	0.673
X9	Farm size	0.672
X ₂	Education	0.591
X ₂₆	Irrigation index%	0.546
X ₁₄	Selling%	0.332
X ₁₁	Risk orientation	0.198

Factor 2

The factor 2 is renaming as **<u>Input support</u>**. It accounted for 8.266 percent of the total data variance with 18.262 cumulative

percent. Five variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₈₁	Family income primary	0.474
X ₂₂	Fertilizer%	0.410
X ₄₁	Primary occupation	0.402
X ₃	Family education status	0.320
X ₂₃	Pesticide%	0.234

Factor 3

The factor 3 is renaming as **Family composition**. It accounted for 7.114 percent of the total data variance with 25.376 cumulative percent. Five variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₁	Age	0.489
X ₂₄	Weed management%	0.433
X ₂₄ X ₁₆	Migration	0.381
X ₇	Family size	0.297
X ₆	Family type	0.279

Factor 4

The factor 4 is renaming as **Social status**. It accounted for 5.903 percent of the total data variance with 31.278 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

Variability		Factor loading
X ₁₀	Social participation	0.471
X ₈₂	Family income secondary	0.448
X ₄₂	Secondary occupation	0.374

The factor 5 is renaming as <u>Weed management</u>. It accounted for 5.32 percent of the total data variance with 36.598 cumulative percent. Two variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₃₅	Change pattern in weed problem	
	over last 20 years.	0.545
X ₂₉	Farm power	0.513

Factor 6

The factor 6 is renaming as **Resource support**. It accounted for 4.787 percent of the total data variance with 41.385 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₁₂	Index of farm mechanization	0.506
X ₂₈	Varietal change	0.400
X ₁₈	Utilization of personal cosmopolite	
	sources of information	0.347

Factor 7

The factor 7 is renaming as <u>Weather disaster & seasonal</u> <u>pattern</u>. It accounted for 4.095 percent of the total data variance with 45.48 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₁₉	Utilization of personal localite	
	sources of information	0.420
X_{33}	Change in seasonal pattern over	
	last 20 year	0.401
X ₃₂	Change pattern in weather disaster	
	over last 20 year	0.387

Factor 8

The factor 8 is renaming as **Extension contact**. It accounted for 4.075 percent of the total data variance with 49.555 cumulative percent. Two variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₂₁	Seed rate%	0.443
X ₂₀	Contact with extension personal	0.413

Factor 9

The factor 9 is renaming as **Rainfall pattern**. It accounted for 3.541 percent of the total data variance with 56.834 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

Variability	Factor loading
X ₃₀ Change in rainfall pattern over last 20 year	0.42

The factor 10 is renaming as <u>Change pattern in insect/pests</u> <u>and diseases</u>. It accounted for 3.446 percent of the total data variance with 60.28 cumulative percent. Two variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
	Change pattern in insect/pests and	
	diseases over last 20 year	0.569
X ₂₇	Sowing time	0.337

Factor 11

The factor 11 is renaming as **Exposure**. It accounted for 3.126 percent of the total data variance with 63.406 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

Variability		Factor loading	
X ₃₀	Mass media exposure	0.338	

Factor 12

The factor 12 is renaming as **<u>Cropping intensity</u>**. It accounted for 2.994 percent of the total data variance with 66.4 cumulative percent. Two variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₅	Caste	0.353
X ₁₃	Cropping intensity	0.238

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 351

The factor 13 is renaming as **Change in temperature**. It accounted for 2.874 percent of the total data variance with 69.274 cumulative percent. Two variables having high factor loading was chosen to interpret this factor. The factor loading were positive. The variable and factor loading were:

	Variability	Factor loading
X_{31}	Change pattern in temperature over last	
	last 20 year	0.381
X_{15}	Debt	0.339

Table 6.24: Factor analysis: Indicator of impact on sustainable livelihood generation through rice production management in the light of climate change. (SRI method of rice)

	Variables	Factor	% of	Cumulative	Factor
Factor	variables	loading	variance	%	renaming
	X ₂	0.519			
	X ₃	0.351			
Factor	X ₄₁	0.462	9.54	9.54	Family
1	X ₈₁	0.665	9.34	9.54	capability
I	X ₉	0.67			capability
	X ₁₇	0.435			
	X ₂₇	0.284			
Factor	X ₆	0.741	8.35	17.89	Weather
2	X ₇	0.759	0.30	17.09	disaster
Z	X ₃₂	0.305			uisastei
	X ₄₂	0.413			
Factor	X ₈₂	0.41	6.332	24.222	Occupation
3	X ₁₀	0.305	0.332	24.222	mobility
5	X ₁₂	0.363			mobility
	X ₁₃	0.238			

				-	
Factor 4	X ₁₅ X ₁₉ X ₂₉	0.496 0.322 0.351	5.856	30.078	Debt
Factor 5	X ₂₀	0.435	5.046	35.124	Extension contact
Factor 6	X ₁₁ X ₁₄ X ₂₈	0.376 0.327 0.438	4.515	39.638	Varietal change
Factor 7	X ₅ X ₁₈ X ₂₆	0.339 0.396 0.497	4.383	44.021	Irrigation facility
Factor 8	X ₃₁	0.555	4.134	48.156	Change in temperatur e
Factor 9	X ₂₂ X ₂₃ X ₃₄	0.407 0.3 0.446	3.993	52.148	Input support
Factor 10	X ₃₀	0.371	3.643	55.792	Rainfall pattern
Factor 11	X ₂₁	0.347	3.283	59.075	Seed rate
Factor 12	X ₂₅	0.236	3.098	62.173	Water manageme nt
Factor 13	X ₃₅	0.482	3.037	65.21	Weed manageme nt
Factor 14	X ₁₆ X ₂₄	0.104 0.355	2.868	68.078	Migration
Factor 15	X ₁ X ₃₃	0.21 0.436	2.614	70.692	Change in seasonal pattern

SRI method of rice: Factor analysis for clubbing of variables into factor based on factor loading.

Factor 1

The factor 1 is renaming as **Family capability**. It accounted for 9.54 percent of the total data variance with 9.54 cumulative percent. Seven variables having high factor loading were chosen to interpret this factor. The factor loadings were all positive. The variables and factor loading were:

	Variability	Factor loading
X ₉	Farm size	0.670
X ₈₁	Family income primary	0.665
X ₂	Education	0.519
X ₄₁	Primary occupation	0.462
X ₁₇	Mass media exposure	0.435
X ₃	Family education status	0.351
X ₂₇	Sowing time	0.284

Factor 2

The factor 2 is renaming as <u>Weather disaster</u>. It accounted for 8.35 percent of the total data variance with 17.89 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₇	Family size	0.759
X ₆	Family type	0.741
X ₃₂	Change pattern in weather disaster over last 20 year	0.305

The factor 3 is renaming as **Occupation mobility**. It accounted for 6.332 percent of the total data variance with 24.222 cumulative percent. Five variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₄₂	Secondary occupation	0.413
X ₈₂	Family income secondary	0.410
X ₁₂	Index of farm mechanization	0.363
X ₁₀	Social participation	0.305
X ₁₃	Cropping intensity	0.238

Factor 4

The factor 4 is renaming as **Debt**. It accounted for 5.856 percent of the total data variance with 30.078 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₁₅	Debt	0.496
X ₂₉	Farm power	0.351
X ₁₉	Utilization of personal localite	0.322
	sources of information	0.322

Factor 5

The factor 5 is renaming as **Extension contact**. It accounted for 5.046 percent of the total data variance with 35.124 cumulative percent. A variables having high factor loading was

chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

	Variability	Factor loading
X_{20}	Contact with extension personal	0.435

Factor 6

The factor 6 is renaming as <u>Varietal change</u>. It accounted for 4.515 percent of the total data variance with 39.638 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₂₈	Varietal change	0.438
X ₁₁	Risk orientation	0.376
X ₁₄	Selling%	0.327

Factor 7

The factor 7 is renaming as **Irrigation facility**. It accounted for 4.383 percent of the total data variance with 44.021 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₂₆	Irrigation index%	0.497
X ₁₈	Utilization of personal cosmopolite sources of information	0.396
X ₅	Caste	0.339

The factor 8 is renaming as <u>Change in temperature</u>. It accounted for 4.134 percent of the total data variance with 48.156 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

Variability	Factor loading
X ₃₁ Change pattern in temperature (day/night)	
over last 20 year	0.555

Factor 9

The factor 9 is renaming as **Input support**. It accounted for 3.993 percent of the total data variance with 52.148 cumulative percent. Three variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability			
X ₃₄	Change pattern in insect/ pests diseases over last 20 year	s and	0.446	
X ₂₂	Fertilizer%		0.407	
X ₂₃	Pesticide%		0.300	

Factor 10

The factor 10 is renaming as **Rainfall pattern**. It accounted for 3.643 percent of the total data variance with 55.792 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

	Variability	Factor loading
X ₃₀	Change in rainfall pattern	
	over last 20 year	0.371

The factor 11 is renaming as <u>Seed rate</u>. It accounted for 3.283 percent of the total data variance with 59.075 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

Variability		Factor loading
X ₂₁	Seed rate%	0.347

Factor 12

The factor 12 is renaming as <u>Water management</u>. It accounted for 3.098 percent of the total data variance with 62.173 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

Variability		Factor loading	
X ₂₅	Water management%	0.236	

Factor 13

The factor 13 is renaming as <u>Weed management</u>. It accounted for 3.037 percent of the total data variance with 65.21 cumulative percent. A variables having high factor loading was chosen to interpret this factor. The factor loading was positive. The variable and factor loading was:

	Variability	Factor loading
X ₃₅	Change pattern in weed problem	
	over last 20 year	0.482

The factor 14 is renaming as **Migration**. It accounted for 2.868 percent of the total data variance with 68.078 cumulative percent. Two variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

Variability		Factor loading
X ₂₄	Weed management%	0.355
X ₁₆	Migration	0.104

Factor 15

The factor 15 is renaming as **Change in seasonal pattern**. It accounted for 2.614 percent of the total data variance with 70.692 cumulative percent. Two variables having high factor loading were chosen to interpret this factor. The factor loading was positive. The variable and their factor loading were:

	Variability	Factor loading
X ₃₃	Change in seasonal pattern over last 20 year	0.436
X ₁	Age	0.210

Table 6.25: Problems faced by the selected respondent regarding rice production management in the light of climate change.

(Conventional method of rice)

S.N.	Problem faced due to	Frequency	%	Rank
	climate change			
1	Yield fluctuation every year due to climate change.	14	14	I
2	Rate of increase in insect/pests and disease every year due to unfavorable weather condition.	11	11	11
3	Lack of agricultural knowledge and training facilities for better production under climate change situation	9	9	111
4	Improper water management/Irrigation sources	9	9	111
5	Not getting optimum time for sowing due to change in rainfall pattern.	8	8	IV
6	Problem faced during transplanting (availability of sufficient water) due to unfavorable weather condition.	7	7	V
7	Labour crisis	7	7	V
8	Less adaptation of plant protection measures.	6	6	VI
9	Improper weed management.	5	5	VII
10	Imbalance use of chemical fertilizers.	5	5	VII
11	Unavailability of inputs on proper time.	5	5	VII
12	Unfavorable price for output.	5	5	VII
13	Lower seed replacement rate and more dependency on farm produce seed.	4	4	VIII
14	Irregular electricity.	3	3	IX
15	Insect/pests and disease identification	2	2	X

Climate Change Impact on Rice: Life, Livelihood and Perception ISBN: 978-93-85822-63-6 360

Table 6.26: Problems faced by the selected respondent during rice production management in the light of climate change.

		(SRI metho		-
S.N.	Problem faced due to	Frequency	%	Rank
	climate change			
1	Rate of increase in insect/pests and	17	17	I
	disease every year due to			
	unfavorable weather condition.			
2	Improper weed management.	10	10	11
3	Yield fluctuation every year due to climate change.	8	8	111
4	Insect/pests and disease identification	8	8	111
5	Imbalance use of organic/chemical fertilizers.	8	8	111
6	Not getting optimum time for sowing due to change in rainfall pattern.	7	7	IV
7	Improper water management	6	6	V
8	Problem faced during transplanting (availability of sufficient water) due to unfavorable weather condition.	6	6	V
9	Unfavorable price for output.	6	6	V
10	Less adaptation of plant protection measures.	5	5	VI
11	Lack of agricultural knowledge and training facilities for better production under climate change situation	5	5	VI
12	Labour crisis	4	4	VII
13	Lower seed replacement rate and more dependency on farm produce seed.	4	4	VII
14	Unavailability of inputs on proper time.	3	3	VIII
15	Irregular electricity.	3	3	VIII

Table 6.27: Suggested intervention according to problem faced due to climate change for both categories of farmers.

S.N		
Conventional	SRI	
method	method	
1	3	i) Crop diversification, ii) Essential monitory support (Farmer/State or Central Govt.)
2	1	Integrated pest management should be adopted to avoid yield crisis. (University/ Govt.)
3	11	Distribution of agricultural knowledge and timely training facilities should be provided under the supervision of various governmental agencies. (Govt./University Extn. Dept.)
4	7	Timely water management should be done which also avoid the yield crisis. (University/ State Govt.) Subsidy in Agricultural irrigation work should be increased. (State Dept. of Agril.)
5	6	Watershed management/ water harvesting. (Farmer)
6	8	Water harvesting should be done for further use of that water during transplanting. (Farmer)
7	12	In case of labour crisis, the attitude or behaviour of the owner towards the labour should be co- operative.(Farmer)
8	10	Integrated pest management should be adopted to avoid yield crisis. (University/ Govt.)

	r	
9	2	Timely weed management should be done which also avoid the yield crisis. (University/ State Govt.)
10	5	There should be necessity of soil testing before application of fertilizer to overcome the problems of soil infertility and high production cost. (Both University/Govt.)
11	14	Essential agricultural inputs should be supplied to the farmer through proper distribution system within timeframe. (State Dept. of Agriculture)
12	9	The output price security should be provided by respective APMCs by considering the cost of production of that particular area. (APMC)
13	13	Creation of proper innovation should be necessary regarding quality seed replacement rate and their benefits for upliftment of productivity. (Research institution/ Organization)
14	15	Timely availability of electricity should be required to fulfil the Agricultural operations. (Govt./Electricity board)
15	4	Training/ Farm visit/ Demonstration. (Govt/ KVK/ Agril university)